

Polyglot Canton
Towards an open language ecosystem and EVM

compatibility with privacy on Canton Network

Digital Asset
info@digitalassset.com
https://digitalasset.com
https://canton.network

February 2025

Abstract
Canton Network is a public blockchain network with configurable controls and

privacy. Thanks to a unique stakeholder-based consensus methodology, it can be set up
to serve anything from public decentralized applications, to addressing the requirements
demanded by regulators and financial institutions. It can do all this while still maintaining
blockchain’s key ability to transact atomically and with low trust across the entire public
network. The consensus protocol builds on an extended UTXO ledger model in which
transactions have a rich structure that allows their decomposition into overlapping
sub-transactions that can be distributed and validated independently in a deterministic
fashion. A rich ledger model such as this puts strong demands on the smart contract
language that is used both to construct and validate the resulting transactions. The
solution in Canton to date is the Daml smart contract language, a custom language stack
derived from Haskell. The Daml language has allowed Canton to be proven out and
mature, but for a public and open Canton Network, there are good reasons to open it up
to alternative programming experiences. Firstly, Daml is a purely functional and strongly
statically typed language designed to provide maximal confidence and safety for mission
critical institutional use cases. Supporting additional languages following other proven
paradigms would make Canton accessible to a wider pool of developers requiring less
upfront education. Secondly, Canton Network aims to apply the best parts of crypto and
DeFi to traditional finance, and to break down the currently hard barrier between those
two worlds. Supporting those languages that have become popular in DeFi, Solidity in
particular, would further that aim, and additionally make those languages compatible with
the control and privacy requirements demanded in regulated finance. And lastly, and
maybe most crucially, smart contract and general language ecosystems have evolved
over recent years to the point where there are compelling and viable alternatives to
Daml’s current language stack. This paper demonstrates alternative language engines
like Wasm in Canton, which in turn opens the door to compilation or hosting of Solidity in
Wasm using proven tools like Solang or Rust-EVM. It presents a path to a future where
Canton is polyglot, widely accessible, and compatible with EVM chains and DeFi.

mailto:info@digitalassset.com
https://digitalasset.com
https://canton.network

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

1 Introduction
Blockchains and smart contract based applications promise to transform financial
technology1,2. Today’s financial systems operate in one of two ways. The model most
prevalent in consumer facing digital native finance is centralization of data and control in
large financial intermediaries that can offer slick near real time experiences. Services like
PayPal or Robinhood are examples of such services, including the downsides of the
added counterparty risks. The second model, prevalent in traditional finance, predates
even the internet. Every financial institution keeps its own books. Ownership and servicing
of assets is managed through complex hierarchical account structures across multiple
organizations. Transactions that operate on multiple organizations’ books have to be
coordinated through long sequences of messages between these organizations, and
errors corrected through reconciliation processes. This system is distributed, and for all
intents and purposes even trustless and decentralized, but consistency across
organizations is ascertained through human error checking and labor, not through
properties of the system itself.

Blockchain, first introduced by Bitcoin3, offers a novel third way. Ownership
records are kept on a low trust distributed system, often called a decentralized system in a
way that combines the benefits of the two existing approaches. The system operates in
near real time allowing investor experiences similar to those on centralized systems. Yet
the system is so secure that participants can treat it with the same confidence as a book
they would keep themselves and thus use it as a shared golden source of truth for the
state of assets, all without centralization of book keeping or trust in any centralized entity.
This is so robust and proven that in the United States of America, Bitcoin is considered a
commodity4.

In the years immediately following Bitcoin’s introduction, there were a number of
innovations and imitations all of which shared the key property that blockchain and
application were one and the same. The Bitcoin application is part of the Bitcoin
blockchain and the Bitcoin blockchain is not optimized to host any other application. This
paradigm was shifted by Ethereum5, widely regarded as the first general smart contract
blockchain. Buterin, the author of the Ethereum paper, has stated that the name “smart
contract” is a bad choice, proposing instead “persistent script” as a name6. This latter
name does capture the idea rather well. Smart contracts allow developers to express state
schemas for persisted data that is synchronized via the blockchain, as well as scripts
which operate on that data, corresponding to rules and authorizations of those rules which
govern the data. Persisted data, and procedures on data are the essence of an
application backend and as such Ethereum was highly successful in enabling blockchain
applications: third party applications developed with smart contracts as the core
persistence and business logic.

6 Twitter (now X) post, Buterin, 2018, https://x.com/vitalikbuterin/status/1051160932699770882?lang=en

5 Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform, Buterin, 2014,
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf

4 BitCoin basics, CFTC, 2019, https://www.cftc.gov/sites/default/files/2019-12/oceo_bitcoinbasics0218.pdf
3 Bitcoin: A Peer-to-Peer Electronic Cash System, Sathoshi Nakamoto, 2009, https://bitcoin.org/bitcoin.pdf
2 Finternet: the financial system for the future, Carstens & Nilekani, 2024, https://www.bis.org/publ/work1178.pdf
1 III. Blueprint for the future monetary system: improving the old, enabling the new, BIS, 2023, https://www.bis.org/publ/arpdf/ar2023e3.pdf

2

https://x.com/vitalikbuterin/status/1051160932699770882?lang=en
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://www.cftc.gov/sites/default/files/2019-12/oceo_bitcoinbasics0218.pdf
https://bitcoin.org/bitcoin.pdf
https://www.bis.org/publ/work1178.pdf
https://www.bis.org/publ/arpdf/ar2023e3.pdf

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

While already of high value for single applications, smart contract chains like
Ethereum typically unlock further benefits by acting as an application platform for multiple
applications. Applications hosted on the same blockchain can interact with each other by
making programmatic calls from one smart contract to another, with the guarantee that
any effects across smart contracts are committed in a single atomic transaction. In terms
of developer experience, this is as simple as calling one C library from another, and
collating effects in a single database transaction, but thanks to the decentralized nature of
the system, the shared persistence, and low trust, it opens up entirely new possibilities.
One developer can launch a payment system. Another developer can launch a tokenized
bond. And a third can launch an exchange, in which these assets can be swapped,
instantly, atomically, and without counterparty risks. This is commonly referred to as a
delivery versus payment transaction, or DvP. All of these applications can be run with
centralized or decentralized control, giving rise to entirely new and innovative business
models, commonly referred to as Decentralized Finance (DeFi).

To illustrate the difference between traditional app integration via APIs versus
composition on the blockchain, consider travel aggregators. Alice wants to book a
complex holiday and searches for flights on several airlines, hotels, and car rental through
an aggregator. The prices are shown and she decides to book. After entering her payment
details, the aggregator in the background attempts to make independent bookings with the
multiple airlines, hotels, and car rental companies. It’s possible for some of these to
succeed, and some of these to fail, leaving Alice with a partial itinerary. She now has to
plug the gap, potentially leaving her with less favorable terms than an altogether different
itinerary. Contrast what an experience on a blockchain system could look like. The
settlement, meaning the exchange of Alice’s money for binding bookings with all the
different vendors, can happen in a single atomic transaction. If one booking fails, all fail,
leaving Alice free to pursue a different arrangement.

Blockchain for regulated finance can solve the same two problems that the technology
demonstrably solves in crypto and DeFi: Synchronization in real time with low trust and
high integrity, and unparalleled interoperability between applications running on the same
network. But there are additional challenges for adoption of the technology by regulated
entities, and these have been understood in some form for as long as smart contract
blockchains have been around.
​ Regulated institutions are regulated precisely to enforce some baseline of risk
management that ensures financial stability. Distributed systems across multiple
institutions introduce new counterparties, or new ways of interacting with those
counterparties, and that can significantly change the risk profile of assets managed on
such systems. The regulators have clarified the treatment of blockchain based assets over
the last years7, and have identified the specific risks associated with the technology as
used in crypto and DeFi, commonly called public permissionless8 networks. Taking the
above example of a payment and tokenized bond being exchanged in a DvP transaction,
for the assets in question to be considered equivalent to the same assets managed on

8 Working paper 44 Novel risks, mitigants and uncertainties with permissionless distributed ledger technologies, BIS, 2024, https://www.bis.org/bcbs/publ/wp44.pdf
7 SCO60 Scope and Definitions on Cryptoasset Exposures, BIS, 2022, https://www.bis.org/basel_framework/chapter/SCO/60.htm

3

https://www.bis.org/bcbs/publ/wp44.pdf
https://www.bis.org/basel_framework/chapter/SCO/60.htm

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

traditional IT systems, they need equivalent risk profiles. Each asset needs to be backed
by a clearly accountable and licensed registrar9. That registrar needs sufficient control to
ensure settlement, finality and legal compliance. And the registrar needs to maintain
privacy and confidentiality, preventing ownership data leaking between applications and
between investors.
​ These requirements gave rise to a first generation of enterprise smart contract
blockchain systems soon after the launch of Ethereum, most notably Quorum10, Besu11,
Fabric12, and Corda13. First and foremost, these systems solve for the regulatory control
requirements by running as private permissioned networks, and this has been proven out
numerous times with regulated production systems running on all of the above systems
around the world14. However, confidentiality (often referred to as privacy) remains a
challenge for many such systems15, and due to the lack of interoperability between private
systems, the network effects visible in DeFi are not materializing in the same way. A
number of initiatives are attempting to address this issue16 and establish unified ledgers
that can act as the common venue for multiple regulated assets and services.

Privacy and confidentiality also remain one of the greatest challenges for the Ethereum
ecosystem17 and public permissioned networks in general. An example where this is
creating challenges in practice is that collateral movements in and out of crypto
derivatives exchanges are fully transparent on chain. That means anyone can use this
information plainly at regular intervals to deduce a trader or market maker's financial
position, and use that information to their advantage.
The blockchain community at large is pursuing a number of approaches to add privacy
and confidentiality to the Ethereum ecosystem. The below lists a few of the prevalent
ideas with their capabilities and limitations. They all have in common that they try to add
privacy on top of the Ethereum Virtual Machine (EVM) and as such do not address the
core architecture of EVM chains, which is a fully replicated, transparent, and
permissionless consensus. As a consequence, none of them are able to meet general
purpose privacy and confidentiality on Solidity contracts:

●​ Anonymization, pseudonymization and similar approaches like the Stealth
Addresses cited in (An incomplete guide to stealth addresses, Buterin, 2023)

●​ Privacy Pools18, which use zero knowledge proof cryptography for simple
tokenization by hiding the connections between deposits and withdrawals from a
pool of assets.

●​ Homomorphic encryption19 offers the obfuscation of integer values while still
operating on them using basic arithmetic operations and comparisons.

19 fhEVM github repo, https://github.com/zama-ai/fhevm
18 Blockchain Privacy and Regulatory Compliance: Towards a Practical Equilibrium, Buterin et. al, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4563364
17 An incomplete guide to stealth addresses, Buterin, 2023, https://vitalik.eth.limo/general/2023/01/20/stealth.html

16 Global Layer 1 (GL1) Whitepaper, Monetary Authority of Singapore, 2024,
https://www.mas.gov.sg/publications/monographs-or-information-paper/2024/gl1-whitepaper

15 Blockchain privacy delays launch of Brazil’s DREX CBDC, enters phase 2, Ledger Insights, 2024,
https://www.ledgerinsights.com/blockchain-privacy-delays-launch-of-brazils-drex-cbdc-enters-phase-2/

14 Corda Use Case Directory, R3, https://r3.com/products/use-case-directory-all/
13 Corda: An introduction, Brown / Carlyle / Grigg/ Hearn, 2016, https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
12 Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, Elli Androulaki et al, 2018, https://arxiv.org/abs/1801.10228

11 Hyperledger Unanimously Approves First Ethereum Codebase For Enterprises, Forbes, 2019,
https://www.forbes.com/sites/michaeldelcastillo/2019/08/29/hyperledger-unanimously-approves-first-ethereum-codebase-for-enterprises/

10 JP Morgan’s Quorum blockchain powers new correspondent banking network, www.bankingtech.com, 2017,
https://web.archive.org/web/20171109080854/http://www.bankingtech.com/1037032/jp-morgans-quorum-blockchain-powers-new-correspondent-banking-network/

9 Registrar on Investopedia, https://www.investopedia.com/terms/r/registrar.asp

4

https://github.com/zama-ai/fhevm
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4563364
https://vitalik.eth.limo/general/2023/01/20/stealth.html
https://www.mas.gov.sg/publications/monographs-or-information-paper/2024/gl1-whitepaper
https://www.ledgerinsights.com/blockchain-privacy-delays-launch-of-brazils-drex-cbdc-enters-phase-2/
https://r3.com/products/use-case-directory-all/
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
https://arxiv.org/abs/1801.10228
https://www.forbes.com/sites/michaeldelcastillo/2019/08/29/hyperledger-unanimously-approves-first-ethereum-codebase-for-enterprises/
https://web.archive.org/web/20171109080854/http://www.bankingtech.com/1037032/jp-morgans-quorum-blockchain-powers-new-correspondent-banking-network/
https://www.investopedia.com/terms/r/registrar.asp

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

●​ Private chains or rollups, which restrict access to the blockchain to a small
invite-only group of participants. This provides privacy from the general public, but
there is no confidentiality within the chain. It’s fully transparent for anyone with
access. Traditionally, this was the domain of enterprise ethereum clients like
Quorum and Besu, but Tessera, one of the last remaining private transaction
managers for Ethereum, was recently sunset20. Private rollups, subnets, and
sidechains offer the same level of privacy, but slightly better interoperability in that
they typically have inbuilt non-transactional messaging to other chains in the same
ecosystem.

●​ Confidential compute21 can be used to run the blockchain in hardware enclaves
provided by groups of semi-trusted entities. In this model, data is either public,
meaning visible to all, or private, visible to nobody at all.

Notably and slightly surprisingly given the privacy rhetoric around zero knowledge proofs,
the authors of this paper could not find any active projects attempting to add confidentiality
or privacy to regular Ethereum contracts.

Canton22 is a next generation layer 1 with fine-grained smart-contract configured controls,
and need-to-know privacy and confidentiality based on data minimization, allowing
everything from permissionless DeFi to regulated finance, all while maintaining the ability
to perform atomic smart contract calls between independent applications. It enables
application composition along the lines of the DeFi example above for regulated entities.
Two regulated institutions can launch payment and bond tokenization applications
maintaining full privacy, confidentiality and control. Asset owners can construct and
execute atomic transactions which move assets on both sides without affecting the privacy
or confidentiality properties. It allows the organic development of a public network and a
unified ledger where applications and users can openly join and extend the business
running on the network like in a public permissionless chain, but where individual
applications can be controlled in the same vein as on a private permissioned network.
Picking up on the collateral example above, a transaction pledging an asset to an
exchange would be precisely to the trader, the exchange, and escrow agent at which the
asset is pledged, and the institution(s) running the asset’s registry. Returning to the DvP
example, Canton can execute a DvP with sub-transaction privacy. The buyer and owner
see the entire swap, but the registrars of payment and delivery assets see only a simple
transfer of their respective assets, all while still guaranteeing atomic settlement, and
providing resilience against malicious participants.

Canton’s ledger model (formerly the Daml Ledger Model23) provides both the abstract
conceptual mental model for smart contract developers on Canton, as well as the
theoretical foundation for Canton to offer its independent control, privacy, and
confidentiality properties. Like many other privacy-first blockchain platforms (see section
2.3), Canton uses an extended unspent transaction output model (eUTXO). The UTXO

23 Daml documentation on the Daml Ledger Model, https://docs.daml.com/concepts/ledger-model/index.html
22 Canton: A Daml based ledger interoperability protocol, Digital Asset, 2020, https://www.canton.io/publications/canton-whitepaper.pdf
21 Oasis Sapphire network, https://oasisprotocol.org/sapphire
20 Sunsetting Tessera and Simplifying Besu, Linux Foundation, 2024, https://www.lfdecentralizedtrust.org/blog/sunsetting-tessera-and-simplifying-hyperledger-besu

5

https://docs.daml.com/concepts/ledger-model/index.html
https://www.canton.io/publications/canton-whitepaper.pdf
https://oasisprotocol.org/sapphire
https://www.lfdecentralizedtrust.org/blog/sunsetting-tessera-and-simplifying-hyperledger-besu

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

model goes back all the way to Bitcoin and is based on the idea that the ledger state is
simply the set of immutable outputs from committed transactions that have not yet been
spent by later transactions. Canton extends this model by enriching transactions with a
hierarchical structure of actions, which can be thought of as the call graph of smart
contract functions, including special functions for the creation and spending of outputs. As
part of the consensus protocol, this call graph is decomposed into stakeholder specific
views, which are distributed on a need to know basis using standard cryptography and
data minimization, and validated using a fine grained stakeholder based Proof of Authority
per view. This decomposition of transactions translates into a decomposition of ledger
state so that each participant holds only their subset of all UTXOs on a need to know
basis, thus providing privacy and confidentiality.
​ Abstract ledger models are common to many smart contract ledgers, and the EVM
ledger model provides a good point of comparison. In the EVM ledger model, the state
consists of Accounts (identified by addresses), which can be either externally owned via a
cryptographic key, or hold smart contract code and mutable state controlled by that code.
All accounts are visible to all participants in a fully transparent fashion, which gives each
smart contract account, and indeed the full EVM, the properties of a fully replicated state
machine. A transaction is a top level function call into a smart contract account, which
every participant can execute consistently due to their knowledge of the entire global
state, moving the EVM state machine from one state to the next.
​ The addition of the primitives for a ledger model is what turns a surface language
into a smart contract language. For example, Solidity extends an ECMAScript expression
language with primitives for EVM smart contract account. The Solana Program Crate24
adds Solana ledger model primitives to Rust to turn Rust into a smart contract language.
The more cleanly the ledger model is separated from the language interpreter, the easier
it is to support additional languages and virtual machines. As Section 4 will demonstrate,
the Canton ledger model is well enough abstracted out to allow for additional languages
and virtual machines. The EVM ledger model, by contrast, is relatively tightly intertwined
with the EVM interpreter, which is why efforts for additional languages on EVM ledgers are
typically approached by compiling to EVM (e.g. Vyper25), not by running additional VMs
side-by-side with the EVM.
​
The Daml smart contract language26 was developed in parallel with Canton from the
outset to expose the primitives of Canton’s ledger model. It is purpose made to abstract
away the complexities of the protocol and allow developers to concisely express the
shared data, rules, and permissions of multiparty workflows, including financial
applications. Daml has been proven in some of the highest volume Distributed Ledger
Technology (DLT) applications in the world27. Daml is, and will remain, a robust choice for
programming enterprise grade smart contract applications on Canton.

Daml’s tech stack and design choices were driven by a combination of factors,
including a desire to provide a high degree of developer safety, requirements on runtime
safety and determinism, and the available language and compiler tools at the time. Some

27 DLR Transacts $1 Trillion a Month, Broadridge, 2023, https://www.broadridge.com/article/capital-markets/dlr-transacts-1-trillion-a-month
26 Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows, Bernauer et al, 2019, https://arxiv.org/abs/2303.03749
25 Vyper documentation, https://docs.vyperlang.org/en/stable/
24 Solana Program Crate, https://crates.io/crates/solana-program

6

https://www.broadridge.com/article/capital-markets/dlr-transacts-1-trillion-a-month
https://arxiv.org/abs/2303.03749
https://docs.vyperlang.org/en/stable/
https://crates.io/crates/solana-program

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

of these design drivers, like runtime safety and determinism, hold up. Others, like strong
static typing and a purely functional expression language are a matter of taste and can
present a hurdle to developers not familiar with those language paradigms28,29. And for
some, new alternatives are available, in that robust, safe, and deterministic runtime
environments like WebAssembly (Wasm) engines have been developed and proven out in
the meantime. If Canton were developed today, it would likely take advantage of Wasm
from the outset, and trade off some safety for accessibility in its surface language.

Opening up Canton to additional smart contract languages is feasible thanks to the clean
abstract ledger model, and these advancements in the language space. Additional
development experiences will ease access to Canton for new, larger pools of developers,
and make Canton’s privacy and control properties available to those developers.
​ The availability of near-deterministic byte codes and virtual machines like Wasm,
as well as low-level or purpose-made languages like Rust and AssemblyScript that do not
rely on any particular Wasm host functions, provide a solid language and runtime
foundation. This enables programming models for Canton akin to the Solana Program
Crate referenced above, exposing ledger model primitives through libraries in standard
languages like Rust. Rust's ecosystem of developer tools, its familiar curly brace syntax,
and imperative style is likely more accessible and attractive to developers without a
background in pure familiar programming.

Developer accessibility is also important for the existing community of smart
contract developers. The success of DeFi on Ethereum has resulted in its smart contract
language, Solidity, becoming quite dominant. Solidity is as intertwined with Ethereum’s
ledger model as Daml is with Canton’s. As such, it doesn’t make sense to consider
Solidity as the primary programming language for Canton. However, supporting Solidity as
one option on Canton would have a number of major benefits. Solidity developers could
adopt Canton with direct skills transfer, transitioning to native smart contracts only as the
need arises. Applications already built for Ethereum, private permissioned deployments, in
particular, could be lifted and shifted across to Canton Network and benefit from network
effects that are possible there. And Canton could give Solidity contracts the properties that
they lack for regulated use on other public networks: controls, privacy, and confidentiality
while maintaining atomic smart contract calls.

The gravity of the privacy problem for Ethereum Virtual Machine (EVM) ledgers,
and the partiality of all of the above approaches presents a great opportunity for the
Canton Network. Canton supports fine grained sub-transaction privacy with smart contract
interoperability at the ledger model and protocol level. EVM compatibility for Canton could
give rise to a new type of privacy solution for EVM, in which different contracts or even
pieces of contract state are accessible to different stakeholder groups, while maintaining
atomic smart contract calls.

Since Daml, Wasm-native languages, and existing smart contract languages like
Solidity offer varied benefits and styles attractive to different stakeholder groups, a truly
open Canton requires multiple and additional languages. Daml needs to be decoupled

29 Empirical Analysis of Programming Language Adoption, Meyerovich and Rabkin, 2013, https://lmeyerov.github.io/projects/socioplt/papers/oopsla2013.pdf
28 Learning Daml: Advantages and Challenges, Behnke, 2023, https://www.halborn.com/blog/post/learning-daml-advantages-and-challenges

7

https://lmeyerov.github.io/projects/socioplt/papers/oopsla2013.pdf
https://www.halborn.com/blog/post/learning-daml-advantages-and-challenges

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

from Canton even further to turn Canton into a truly polyglot ecosystem where different
developers can choose their smart contract language to suit their needs, skills, and use
cases.

This paper is laid out in four sections diving deeply into the status quo, ongoing work, and
future opportunities regarding the languages supported by Canton.
​ Section 2 will recap those parts of the Canton protocol required to understand
smart contract language design and considerations. Section 2.1 presents the high level
architecture of Canton, in particular its two-tier network design consisting of participant
nodes and synchronizers. These correspond roughly to a separation of validation and
ordering, or to full nodes and low level networking and byzantine fault tolerance (BFT)
networking in other networks. Section 2.2 covers identity and cryptography as needed to
understand the abstract identity concept of Parties introduced in the Canton ledger model
in section 2.3. The latter is an abstract extended unspent transaction output (eUTXO)
model, which not only extends what data and script a UTXO can hold, but also endows
transactions with significantly more structure than usual eUTXO models, tracking smart
contract calls in a tree of actions. This structure is used in Canton’s transaction protocol,
covered in section 2.4, to decompose transactions into views that can be distributed and
validated independently of each other. This decomposition allows independent
applications to exert control while maintaining confidentiality through sub-transaction
privacy. Section 2.5 concludes the discussion on Canton by covering how smart contracts
fit into the consensus and connect it with the abstract ledger model. Smart contract
packages are introduced as the deployable unit of smart contract code, and key
constraints and requirements on the language stack are covered in preparation for the
rest of the paper.

Section 3 presents the Daml smart contract language. Section 3.1 shows an
example of a typical Daml package, how it maps to the ledger model, and how a smart
contract call translates into a transaction. The simple example chosen acts as a baseline
for comparison with future languages, as well as to provide some familiarity to readers to
read Daml code snippets in later chapters. Section 3.2 introduces the Daml language
stack at a level needed to consider additional languages being supported by presenting
the key components and interfaces with Canton that need to be modified, extended, or
opened up to support additional languages, most notably Daml’s intermediary language
Daml-LF, its interpreter, and how it interacts with Canton.

Sections 4 and 5 present two parallel but interrelated bodies of work to open up
Canton to additional languages. Section 4 discusses how Canton’s intermediary language
and Canton’s interaction with smart contract engines (commonly called Virtual Machines,
or VMs) could be modified to support additional VMs. Specifically, section 4.1 presents
work on Canton smart contracts written in Rust, and compiled to and executed in a Wasm
runtime. Section 4.2 presents how this capability could be used to support an accessible
high level language experience in Rust, or other Wasm-native languages like
AssemblyScript to develop Canton smart contracts, using standard IDE and compiler
tooling. The construction of 4.1 and 4.2 is such that it generalizes to many runtimes and

8

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

languages and thus presents a path towards Canton supporting numerous VMs and
language stacks, possibly even in a pluggable fashion.

Section 5 covers Solidity specifically. Solidity is about as intertwined with Ethereum
and the Ethereum Virtual Machine (EVM) as Daml is with Canton. Unlike support of a
language like Rust or AssemblyScript, supporting Solidity isn’t just about language
support, but about ledger model and API support. Section 5.1 uses an example of porting
SocGen’s ForgeBond contract30 on Ethereum to Canton and discusses how pure EVM
support may be feasible based on section 4’s Wasm work, by either cross-compiling
Solidity to Wasm using the open source Hyperledger Solang31 compiler, or by hosting a
Wasm-based EVM like Rust-EVM32. Section 5.2 goes on to discuss how the EVM ledger
model could be mapped to the Canton ledger model to go from surface language support
to smart contract support. The section discusses challenges like contention, as well as
advantages over standard EVM, like the ability to run atomic transactions between two
private Solidity contracts. Section 5.3 discusses API compatibility to achieve functional lift
and shift of Solidity applications to Canton. Finally, section 5.4 envisions how minor
language extensions to Solidity could be used to inform a compiler or EVM how to map
Solidity contracts to Canton’s ledger model in more sophisticated ways, which may allow
not only scalability close to Canton-native smart contracts, but for Solidity contracts to
benefit from Canton’s full sub-transaction privacy.

2 Canton
Canton is a blockchain or Distributed Ledger Technology (DLT) system which gives
multiple parties consistent views into a virtual global ledger. The global ledger is not
materialized in any one place, but kept consistent through stakeholder based consensus
between the participants according to rules laid out in smart contracts. Participants’ views
are materialized locally on their own nodes, and used as a permanent record of data. The
below image shows participants Alice, Bob, and Charlie at a conceptual level connecting
to a virtual global ledger and holding different views of that ledger.

32 Rust Evm GitHub repo: https://github.com/rust-ethereum/evm
31 Hyperledger Solang, GitHub repo: https://github.com/hyperledger/solang, Docs: https://solang.readthedocs.io/
30 ForgeBond source code via Blockscan, https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

9

https://github.com/rust-ethereum/evm
https://github.com/hyperledger/solang
https://solang.readthedocs.io/
https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

This section offers a recap of Canton’s architecture, cryptography and identity, ledger
model, and consensus protocol as a foundation for the later discussions on smart
contracts within Canton. Covering Canton’s design and function to the level required to
understand all the nuances involved in integrating smart contract languages goes beyond
the scope of this paper. Readers that would like to dig deeper should refer to previous
works33,34 and documentation35.

2.1 Architecture
Nodes in the Canton Network are called participant nodes. A user or company deploys
one or more participant nodes. The user's participant node stores the user's private
transaction and state data, submits transactions to the network for the user, and
participates in consensus on transactions in which the user is entitled or required to take
part. In short, the participant node represents an independent participant at the protocol
level. What most would consider “the ledger”, the graph of transactions, resulting state,
and cryptographic evidence, is all stored and processed amongst the participants. In both
of these respects, a Canton participant is akin to a full node in traditional blockchains like
Bitcoin or Ethereum. What sets Canton apart from most other blockchains is that both
data and consensus are segmented, not fully replicated. Each node only holds its view of
the ledger, so that no node holds the entire ledger. And consensus is run on a transaction
by transaction basis, involving exactly the stakeholder participants in each transaction in a
per-transaction Proof-of-Authority model.

To transport data between nodes and determine the order of messages, each
participant node connects to one or more private or public synchronizers (previously

35 Daml documentation, Digital Asset, https://docs.daml.com/

34 Canton Network: A Network of Networks for Smart Contract Applications, Digital Asset, 2024,
https://www.digitalasset.com/hubfs/Canton/Canton%20Network%20-%20White%20Paper.pdf

33 Canton: A Daml based ledger interoperability protocol, Digital Asset, 2020, https://www.canton.io/publications/canton-whitepaper.pdf

10

https://docs.daml.com/
https://www.digitalasset.com/hubfs/Canton/Canton%20Network%20-%20White%20Paper.pdf
https://www.canton.io/publications/canton-whitepaper.pdf

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

synchronization domains, or sync domains). Any group of users can coordinate an atomic
transaction amongst the group as long as their participant nodes are connected to a
common synchronizer. Anyone can deploy synchronizers at will. To promote privacy and
net neutrality, data in transit over sync domains is encrypted so that it can be decrypted in
a strict need-to-know fashion, preventing operators or uninvolved participants from
accessing message contents. Synchronizers can be thought of as highly available,
fault-tolerant messaging queues between participant nodes that sequence, timestamp,
and distribute encrypted messages to participant nodes with high transparency and
ordering guarantees.

Transactions coordinated on one synchronizer can use the outputs from
transactions coordinated on another synchronizer as inputs as long as the stakeholder
participants in those outputs are connected to both synchronizers. This allows the
transaction graph to fluidly span across synchronizers. This gives Canton a network of
networks topology at the network level, while exposing a view into a single global ledger of
transactions through the participants at the data level. Application providers and users can
freely choose which synchronizers they use to coordinate which transactions. As such,
Canton creates a mesh network of composable Daml applications in which each
application may make different
tradeoffs between trust,
performance, access control, and
operational complexity.

The resulting network is
public by providing open,
internet-like extensibility of this
mesh of participants, synchronizers
and applications as well as through
the existence of open
synchronizers and applications.
But it is also permissioned as each
participant, application, and
synchronizer has a lot of
independent control over which
parts of the network they allow to
interact with them and how,
allowing a range of configurations
from private centralized subnetworks and services with strong controls to public and
decentralized network infrastructure and DeFi applications.

Illustrated here is a constellation consisting of three private synchronizers and
apps operated by participant nodes “OP” for “Operator”, each providing a prerequisite
piece for the DvP transaction discussed in the introduction. A cash registry provides
payment functionality, a fund tokenization app an asset to be purchased, and a trading
app a marketplace where a Buyer and a Seller meet and agree a trade. The public Global
Synchronizer common to all three operators and the two trading participants allows the
DvP transaction to be coordinated amongst those five nodes.

11

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

2.2 Identity
Akin to blockchain systems, user generated cryptographic public key fingerprints form the
foundational layer of Canton’s identity system. Unlike most other blockchains, however,
Canton adds a layer of abstraction to identity in order to make it easier to manage keys (to
rotate or revoke them, for example), to reuse keys (one key for many wallets), or to set up
complex policies (multi-sig, or read-only access to wallets). This abstraction layer is
known as the topology ledger and next to managing participant node and synchronizer
identities and keys, the topology ledger also manages Canton’s abstract on-ledger identity
called a party. In most situations, the best mental model is to simply identify keys,
participant nodes, and parties one to one and think of that triple as a wallet or address.
But to give a faithful account of Canton’s ledger model and consensus in sections 2.3 and
2.4, understanding the technical distinction between parties and participants and their
relation to keys is of value. That’s what this section covers. An in depth treatment of
Canton’s identity management is available in the documentation36.

Namespaces form the roots of trust in Canton’s topology ledger. A namespace is
identified by the fingerprint of the public key of a private/public key pair called a
namespace root key. By default, participant nodes are in one to one correspondence with
namespaces and generate their namespace root key during initialization. Canton also has
the ability to bootstrap multisig namespaces where there is no single controlling key, but
that’s beyond this paper.
​ Note in particular that like in other public networks, this setup ensures that there is
no single trusted root of trust, but each entity represents themselves by generating their
own identity and own root of trust. Participants must verify each others’ identities.

Identities are tuples name::namespace and thus rigidly linked to a namespace. By
default, a participant node will generate its own identity in the namespace controlled by it
during initialization, using a participant-generated name in the name segment.

Topology changes like creating a new identity are made through topology transactions
signed by the namespace root key and distributed through synchronizers. Topology
transactions follow a simple ledger model akin to certificate chains, and the resulting
ledger of topology transactions is the topology ledger. By default, a participant node will
broadcast the topology changes and state for their namespace to all synchronizers that
they are connected to. A good mental model for this paper is that all topology transactions
are globally known and consistent on all synchronizers. It is possible to maintain different
topology states facing different synchronizers, and it is possible to delegate signing of
topology transactions to namespace intermediate keys, but this has no impact on the rest
of this paper so will not be discussed further.

36 Canton Identity Architecture Documentation, https://docs.daml.com/canton/architecture/identity.html

12

https://docs.daml.com/canton/architecture/identity.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Participants from a ledger viewpoint are identities with several associated key pairs, two
of which are important for understanding the protocol. The first key pair is the signing key,
which the participant uses to authenticate and sign any messages as part of the
consensus protocol. The second is the encryption key used to encrypt messages sent
from one node to another through the synchronizer. The public keys for both pairs are
publicly known as part of the topology state.

Parties are abstract identities best thought of as equivalent to “wallets” or “addresses” in
other blockchains. This is the notion of identity used in the Canton ledger model and smart
contracts. They are mapped to participants in a hosting relationship, which is established
through topology transactions. By default, a party created by a participant is in the same
namespace as the participant, and automatically mapped to the participant in submission
mode, meaning the participant can authorize transactions for that party. In this case, the
signing key of the participant is equivalent to the private key of a Bitcoin address. It is also
possible to host parties in observation mode, meaning read-only, or confirmation mode
meaning participation in consensus on behalf of that party, but no authority to submit
transactions. Parties can also be hosted on multiple nodes at the same time, with N-of-M
schemes for consensus. This flexibility of modes enables simple topologies similar to
Bitcoin and Ethereum or more complex ones often required by enterprise best practices
and security requirements.

2.3 Canton Ledger Model
The Daml documentation37 covers the Daml ledger model in depth. As the core subject of
this paper is programming Canton using languages other than Daml, it will be referred to
as the Canton ledger model here, and introduced to the needed level of detail.

Extended unspent transaction output (eUTXO) ledger models form the core of many
blockchain systems and applications that have privacy and confidentiality at their core. To
name just a few: Corda38, ZCash39, Aztec40, Aleo41, Zeto42. Canton is no exception. This
pattern has good reasons that would go beyond the scope of this paper to discuss in
depth. But in short, the UTXO ledger model, as opposed to Ethereum’s account based
ledger model, breaks up the ledger state into small immutable pieces - UTXOs. This
makes it easier to break up ledger state and distribute it on a need to know basis, allowing
for confidentiality. It also makes it easier to do collision detection, enabling double spend
protection while only partially knowing the ledger state.

Ledger state in a eUTXO ledger is a set of UTXOs, which are immutable pieces of data.
UTXOs are created as the output of a transaction, used as input to other transactions
while they are active, and are eventually archived or spent by some transaction. One of

42 Zeto readme, https://github.com/hyperledger-labs/zeto
41 Aleo documentation, https://developer.aleo.org/concepts/public_private/#aleo-state-storage
40 An introduction to Aztec, Blog, Andrews, 2019, https://aztec.network/blog/an-introduction-to-aztec
39 ZCash Protocol Specification, Bowe/Hornby/Wilcox, 2018-2024, https://zips.z.cash/protocol/protocol.pdf
38 Corda: An introduction, Brown / Carlyle / Grigg/ Hearn, 2016, https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
37 Daml documentation on the Daml Ledger Model, https://docs.daml.com/concepts/ledger-model/index.html

13

https://github.com/hyperledger-labs/zeto
https://developer.aleo.org/concepts/public_private/#aleo-state-storage
https://aztec.network/blog/an-introduction-to-aztec
https://zips.z.cash/protocol/protocol.pdf
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
https://docs.daml.com/concepts/ledger-model/index.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

the distinguishing features of eUTXO as opposed to Bitcoin’s UTXO is that eUTXOs are
typed and can hold arbitrary data according to their type.

An eUTXO transaction consists first and foremost of a possibly empty set of UTXOs as
inputs. It consumes some of these inputs and creates new outputs, which start in an
unspent state.

Transaction validity is where eUTXO ledgers differ the most from each other as well as
from plain UTXO. Validity is a pretty broad concept and can span everything from a
transaction having the right cryptographic signatures to satisfying some transaction
constraint like the sum of input Bitcoin being equal to the sum of output Bitcoin plus some
transaction fees. All UTXO ledgers have some way to define what transactions are valid
by attaching code to UTXOs. In Bitcoin, this is done by attaching a script43 to each UTXO,
which acts as a predicate for any transaction that tries to use the UTXO as input and
evaluates whether the use is valid. If the attached code is rich enough this code is called
smart contracts, and it can thus be said that even Bitcoin supports smart contracts44, it is
just not geared towards it. This model of attaching code to UTXOs is shared by many
eUTXO models, for example Corda45, but it is not the only way as section 2.5 will discuss.

An eUTXO ledger is a labeled directed acyclic graph (DAG) of eUTXO transactions
where the transactions are nodes, and the edges are from transactions that output a
UTXO to transactions that use the UTXO as input. The edges are labeled with UTXO
identifiers, and whether they are used in a consuming or non-consuming fashion (called
Reference States in Corda46, and Reference Inputs in Cardano47, and Data inputs in
Ergo48). Each UTXO can appear on at most one consuming edge, a key property
equivalent to not allowing double spends. In Canton, this graph is called the causality
graph.

Canton’s eUTXO model,
illustrated here, at the
surface looks exactly the
same, with spent/unspent
UTXOs being called
active/archived contracts.
Contracts are typed by
being linked to contract
templates, or templates for
short, which determine both
their data type and the
shape of transactions that
use the contract. We will get back to templates in Section 2.5.

48 Data Inputs, Ergo Documentation, https://docs.ergoplatform.com/dev/protocol/tx/read-only-inputs/
47 CIP-31 Reference Inputs, Cardano CIPs, https://cips.cardano.org/cip/CIP-31
46 Reference States, Corda Documentation, https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/transactions.html#reference-states
45 Smart Contracts in the Corda documentation, https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/smart-contracts.html
44 Contracts on the Bitcoin wiki, https://en.bitcoin.it/wiki/Contract
43 Script on the Bitcoin wiki, https://en.bitcoin.it/wiki/Script

14

https://docs.ergoplatform.com/dev/protocol/tx/read-only-inputs/
https://cips.cardano.org/cip/CIP-31
https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/transactions.html#reference-states
https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/smart-contracts.html
https://en.bitcoin.it/wiki/Script

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Contract Ids are Canton’s addressing scheme for transaction outputs. To express the
graph pictured above, both transactions and transaction outputs need globally unique
identifiers called contract Ids and Transaction Ids, respectively. This paper won’t discuss
how they are computed in Canton. Since Canton’s ledger truly is a DAG, not a linear
order, and has privacy requirements, it’s not as simple as in Bitcoin, where UTXOs are
addressed through transaction id and index. But an important property of contract Ids is
that they are authenticated, meaning that the contract Id cryptographically commits to the
data on the contract.

A hierarchical transaction structure enriches Canton’s ledger model beyond typical
eUTXO models. A transaction is a list of actions, which come in different types covered
below. Some actions, specifically exercise actions, can have consequences, which are
themselves a list of actions or correspondingly a transaction. This endows transactions
with a tree, or more precisely a forest structure where nodes are actions and edges are
via consequence relationships. A sub-transaction of a transaction is obtained by taking a
set of actions from the forest, together with all their (transitive) consequences. As will
become clear later, a good way of thinking about actions is as calls to procedures, the tree
structure as a call graph, and a sub-transaction as a set of calls within that graph plus the
call graph generated by them.

Actions come in several types, not all of which are covered here. The omitted actions
concern transaction rollbacks, contract keys, or are subtle variants of exercises none of
which add to the discussion in this paper. The important two actions to consider are:
​ Create actions which, as the name suggests, create new contracts. In eUTXO
terms, they correspond to transaction outputs. They create new UTXOs. Create actions
can hold arbitrary data, and additionally specify a non-empty set of parties called the
signatories. The latter signifies that these parties have agreed to the contract and as such
have some sort of obligation. Analogous to how it’s best to think of smart contracts as
persistent scripts, it’s best to think of the signatories as the parties that have authorized
the creation of some state and that jointly maintain it.
​ Exercise actions are named to convey the idea of a set of parties exercising a right
on a contract. Those parties are specified by an exercise action and are called the actors.
In persistent script terms, it’s best to think of exercise actions as calls to a script or
procedure on a contract. Such calls are always on an active contract, called the input
contract, and this has the same meaning as in eUTXO. Also just like in eUTXO, the
exercise action has a kind, which is consuming or nonconsuming, which determines
whether the input contract is spent. Exercise actions have consequences, which are
further actions.
​ Every exercise action has an input contract and every create action an output
contract. The actions are said to be on the respective contract.

Ledger commits are transactions requested or submitted by one or more parties, the
requester(s), as defined in 2.2 Identity.

15

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

A Canton ledger is a list of ledger commits, similar to how the Bitcoin ledger is the list of
all blocks or equivalently all committed Bitcoin transactions. The following EBNF-like
grammar summarizes the structure as treated in this paper:

Action ::= 'Create' party+ contract
 | 'Exercise' party+ contract exercise Kind Transaction
Transaction ::= Action*
Kind ::= 'Consuming' | 'NonConsuming'
Commit ::= party+ Transaction
Ledger ::= Commit*

This image illustrates a simple Canton ledger with four commits, leading up to an atomic
DvP.

1.​ Bank issues some cash to Alice
2.​ CSD issues an asset to Deborah
3.​ Alice creates a proposal for the DvP
4.​ Deborah accepts and settles

Solid arrows represent inputs, as in the above UTXO illustration. Dash-dot arrows
represent consequences.

Canton’s validity model is subdivided into three sub-properties: Consistency,
Conformance, and Authorization. Put simply, consistency says that there are no double
spends, conformance says that all transactions adhere to the rules encoded in smart
contracts, and authorization means that all parties that need to authorize an action have
authorized it directly or indirectly.

16

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Conformance and authorization impose important restrictions on the shape of
transactions, which are relevant to language design, as a language ought to facilitate the
creation of valid transactions. They are therefore defined more precisely below.

Conformance restricts which actions are allowed in the ledger. The set of all allowed
actions is called the contract model. For example, a contract model suitable for the above
example may specify that all create actions have a payload that is either an Iou signed by
both specified parties, a PaintOffer, or a PaintAgree each with some given argument
types. And it may specify that the only allowed exercise on an Iou is a consuming
“transfer” specifying a new owner, with the current and new owners as actors, and with the
creation of a new Iou owned by the new owner as its only consequence. An important
property of any conformance model is that it is closed under sub-transactions, meaning if
a contract model allows a transaction T, then it also allows any subtransaction S of T.

Authorization restricts who may request which actions, and puts further constraints on
the contract model. The required authorizers of an action are the signatories for a create
action, and the actors for an exercise action. The authorizers of an exercise action are the
signatories of the input contract plus the actors. The authorization rule says that:
​ For top level actions in a ledger commit, the required authorizers are a subset of
the requesters.
​ The authorizers of a parent action need to include all required authorizers of a
child action, meaning a direct consequence.

Privacy and confidentiality are achieved by specifying the projection of the ledger that a
party gets to see. Each action has a specified set of informees. The informees are the
union of the action authorizers and an extra set of parties called the observers, which the
Daml language section 3.1 will discuss further. A party’s projection of a transaction is the
minimal subtransaction containing the actions on which that party is an informee. A party’s
projection of the ledger is the set of commits for which the party’s projection is non-empty.
A party is said to witness an action if it is in their projection. The difference between
informee and witness can be explained as follows: A party may witness only the creation
of a contract between other parties, but that doesn't mean that the party will be informed
about further actions on that contract. An informee is guaranteed to see any consuming
exercise on a contract for which they are the informee.

17

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

This image shows the informees in the final “swap” transaction of the above DvP example,
under the assumption that the owners of Cash and Asset type contracts are observers.
Note that this is a simplification from more realistic setups where the owner is likely a
signatory. Since both observers and signatories are informees of a contract, this makes no
difference for privacy considerations.

The below image shows the same transaction once more, highlighting the different views
for the four involved parties. Witnesses are only ever added when going down the tree, so
the view tree is a simpler tree than the tree of actions. It will be discussed further in the
next section on Canton’s consensus.

The definitions guarantee that an informee of a create action are also an informee on any
consuming exercise action on the resulting contract. The projection of the ledger can

18

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

therefore sensibly be applied to the state consisting of active contracts as well. A party’s
ledger state is the set of active contracts for which they were an informee of the create
action. Participant nodes store and index their projection of the ledger and ledger state.

The Local Ledger49 of a party is its projection of the global Canton ledger. Typically no
party is privy to the whole global ledger. The rules and definitions of the Canton ledger
model ensure that the party projections of a valid Canton ledger are also valid Canton
ledgers, and that consistent, valid local ledgers can be merged into a valid global Canton
ledger.

2.4 Canton Consensus
Canton’s consensus follows a typical UTXO pattern, with extensions associated with the
two tier architecture (2.1), the identity abstractions (2.2), and transaction structure,
authorization and privacy (2.3).

Commands are submitted by users to a node, corresponding to requesting a commit in
the ledger model. As such, the user submits the authorizing parties and the root actions
of the commit. The node must either host the authorizing parties in submission mode, or
the user must appropriately sign the transaction later in the process. In the case of
exercise actions, they specify the input contract Id only, and not the input contract as a
whole, or the consequences of the action. If the interpretation step requires contracts that
the node does not have in its local storage, the user may also supplement the commands
with additional contract information via a functionality called explicit disclosure50.

Interpretation is the transformation of the commands to a conformant and well authorized
ledger commit in the sense of the ledger model. To do so, it draws on the parties’ ledger
state available to the participant, as well as any additional user-supplied contracts.
Interpretation can fail, but does so deterministically. If it does succeed, the resulting
commit is the unique conformant transaction that could be interpreted from those
commands. This is a slight oversimplification as in practice the user may omit some type
information that the participant then fills in using heuristics, but for the purpose of this
paper, this assumption on the contract model is valid and further restricts the nature of
allowable contract models: If two conformant exercise actions match in all but their
consequences, then their consequences also match. The output of interpretation is a
Daml-LF transaction, discussed further in section 3.2.

Blinding is the process by which the submitting node decomposes the commit into its
views and encrypts them. Witness parties are mapped to witness participants using
hosting relationships in the topology state. The tree of actions is then transformed into a
tree of views such that the witness participants on all actions within a view are the same
and the tree structure is compatible, meaning the actions in a sub-view are (transitive)
consequences of the actions in the parent view. The views are encrypted using participant

50 Explicit Contract Disclosure, https://docs.daml.com/app-dev/explicit-contract-disclosure.html
49 Local Ledgers, Daml Documentation, https://docs.daml.com/concepts/local-ledger.html#local-ledgers

19

https://docs.daml.com/app-dev/explicit-contract-disclosure.html
https://docs.daml.com/concepts/local-ledger.html#local-ledgers

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

encryption keys such that exactly the participants that host the witness parties of a view
can decrypt them. The participant knows all the public keys and hosting relationships
thanks to the shared topology state discussed in 2.2.
​ A parallel confirmation tree is generated that specifies which views need to be
confirmed by which participants. In effect, this specifies which participant quorum is
needed on behalf of each party that authorizes an action within the view. This is used in
the stakeholder-based proof of authority algorithm described further below.
​ In the simple case where parties are fully hosted by single participants, the
confirmation policy is that every participant hosting an authorizer of an action within the
view needs to confirm the view.
​ The views, including their matching confirmation subtrees are assembled into a big
multicast message called a confirmation request. This message also addresses the
confirmation tree as a whole to a subcomponent of the synchronizer called the mediator.
The confirmation request (or more precisely the transaction id, which is a root hash of the
view tree) is signed by the participant or user depending on whether the requesting parties
are hosted in submission mode, or not.

Sequencing involves the submitting participant sending the whole confirmation request to
the synchronizer, or specifically a subcomponent called the sequencer. The sequencer
records the confirmation request in a single total ordering with all other messages it
processes, and then makes the individual views available to the addressees in that
ordering. The sequencer acts as a multicast messaging queue with guaranteed consistent
ordering and delivery. It doesn’t know anything about the payload of the message. From
the sequencer’s perspective, every sequencing request is a batch of multiple envelopes
with CC and BCC addresses containing encrypted messages.

Validation is done by the participant nodes that receive their views of the confirmation
request. Since they all get the confirmation request in consistent order, they all have
consistent ledger state projections and can thus validate their projections consistently and
deterministically. A contract is either active to all its signatories or to none, for example.
Consistency checking therefore boils down to each participant checking that all input
contracts for which they host a signatory party, are active as specified.

Thanks to the contract model being closed under subtransactions, and having
unique conformant transactions for each action, conformance and authorization checking
can be done by taking the root nodes of the view, and reinterpreting and reblinding them.
The node goes through the interpretation and blinding steps again and checks that it gets
the same views. For this, the node doesn’t rely on its stored contracts, but the inputs
specified on the actions themselves. This ensures that witnesses can fully perform
conformance and authorization checks for their views, and is safe since contract Ids
commit to their data, and have already been checked for activeness.

In a non-faulty, non-malicious setting the only failures are write contention (two
conflicting transactions attempting to spend the same UTXOs, or with topology changes),
as well as timeouts. This is a desirable property for a DLT system since failing
transactions are costly.

20

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Confirmation is the core of the stakeholder based proof of authority algorithm.
Nodes specified in the confirmation tree send their verdict on their view to the mediator via
the sequencer. Verdicts are either approvals or rejections.

Mediation involves the mediator aggregating all the confirmations, and evaluating them
according to the confirmation tree. Once enough confirmations have been received to
correspond to positive verdicts from every authorizing party, the mediator addresses a
mediator confirmation in a single multicast message through the sequencer to all involved
participants. This has similar privacy properties to the sequencing of the confirmation
request above.

Commit of the ledger happens with the recordation of the mediator confirmation on the
sequencer. In logical sequencer time, this is at the same point in time for all participant
nodes involved. They apply the transaction and state changes to their local data stores as
they process this message.

As an end result, we have an atomic commit with low trust and high confidentiality. The
synchronizer learns the shape of the transaction via the confirmation tree, the full set of
involved participants, and has access to encrypted messages. This is not dissimilar to an
internet ISP that learns all servers who are communicated with and how much, and also
has access to all encrypted packages, but is unable to decrypt the payloads.

Smart contracts come in twice here, during interpretation and validation. The important
extra requirement this consensus protocol imposes on the language stack is the
uniqueness property described under interpretation. In the mental model of exercise
actions being procedure calls, this property is equivalent to determinism of the
procedures.

21

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

2.5 Smart Contracts in Canton
In some sense, the role of smart contracts in Canton is simple. They are a constructive
specification of the contract model. Constructive in the sense that they are not a predicate
like scripts in Bitcoin, or contracts in Corda, which each put constraints on transactions
that are built using separate code paths. Instead, the conformant transactions are exactly
those that can be built by the smart contract code, and the same code can be used for
validation.

This makes development conceptually easier in two ways.

Firstly it’s aligned with the prevalent imperative thinking in transactional systems
and programming. If one were to implement an Iou registry in memory or using SQL, it is
natural to ask the question “What should a call to transfer do?”, rather than thinking in
terms of transaction constraints like ”What invariants should any transaction on my system
conserve?”. This is one of the great benefits of Ethereum's account based system with
replicated state machines. Mutating state through imperative calls is strongly aligned with
many developers’ way of thinking. Canton gets close to that in a UTXO model.

Secondly, it means there is only one code path. Many other eUTXO systems have
one code path to construct transactions, and a second to validate them. The construction
is often considered “off-ledger” even though it is just as important for a functioning system
as the validation.

Composition is also aided by the constructive nature of the specification and the property
that the contract model is closed under subtransactions. Imagine a naive way of
implementing a “transfer” using a classic eUTXO model by saying “transactions are valid
exactly if they have one input and one output with equal amounts, and the transaction is
signed by the owner of the input”. Now a developer that wants to implement an atomic
swap is stuck, as such a transaction has two inputs and two outputs. The developer of the
original transfer has to prepare for this by expressing validity with great care: “transactions
involving this token as an input are valid if the sum of amounts across all tokens of
matching type is equal to the sum of the amounts on the output tokens of this type, and
the transaction is signed by all owners on any of the inputs”.
​ Contrast constructive eUTXO transactions as in Canton as illustrated here.
Developer one specifies that a transfer is conformant by writing a procedure that creates
consuming “transfer” exercise on an asset with the creation of a new asset as its sole
consequence. Developer two extends the contract model by constructing swaps. They
write a procedure that calls the “transfer” procedure for the delivery and payment assets
respectively. This way of composing aligns
with the imperative mindset, and the
closure under subtransactions. This is
where the correspondence between
exercise actions and procedure calls
comes back into play. From a developer
perspective, composition is via procedure
calls to previously specified procedures.

22

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

From a ledger model perspective,
composition is achieved by specifying new
conformant actions that have previously
specified conformant actions as
consequences.

Packages are units of smart contract code
in Canton used to extend the contract
model. They are identified in a globally
unique way through their package Id, which
is a hash of their “binary” representation
which is distributed. Every create and
exercise action references an identifier
within a package, either a template or a
choice.

Templates are smart contract code
corresponding to create actions. By analogy,
one can think of templates as equivalent to
a class definition in an object oriented language. Templates consist of a data type for the
create arguments of a contract, as well as functions which compute contract metadata
and invariants like signatories and observers from those arguments. These functions are
called during (re-)interpretation when a contract of this type is written or read.
​ Due to this dual purpose of templates it also sometimes makes sense to
distinguish the contract arguments, the data payload that the contract stores, and the
contract itself, which is the result of instantiating the template with given arguments.

Choices are code corresponding to exercise actions. Similar to the above analogy, one
can think of choices as equivalent to class methods in an object oriented language. They
take exercise arguments and compute exercise actions, consisting both of metadata like
the actors as well as the consequences. The code specifically computing the
consequences is called the choice body. A choice corresponds exactly to the “transfer”
and “swap” procedures in the illustrative example above.

Data Serializability is needed for both contract and exercise arguments. Canton uses
gRPC51 APIs throughout, so all serializable data needs to be easily mappable to Protocol
Buffer (protobuf)52 messages. Contract and exercise arguments form an essential part of
commands that users send to the API, of the Canton ledger model transactions that a
user gets back from the API, and of the views as part of the confirmation request that is
distributed through the synchronizer.

52 Protocol Buffers (protobuf) website, https://protobuf.dev/
51 gRPC website, https://grpc.io/

23

https://protobuf.dev/
https://grpc.io/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Package Vetting is the process by which parties (technically currently participants) say
which packages they are willing to participate in. The vetting state is part of the topology
state and changed through topology transactions. New packages allow the application of
new templates and choices to existing contracts, which makes it possible to upgrade
smart contracts. However, since a party authorizes any choice on a contract that they are
signatory on, adding choices needs mutual agreement from all signatories. This is
achieved through vetting.

In conclusion, at a very high level, we need the following from a smart contract language
stack for Canton:
​ A surface language that makes it easy for a developer to express both the
serializable data types of choice and exercise arguments, as well as the procedures
corresponding to templates and choices. The procedure that computes the exercise
consequences must be able to reference templates and choices from other (dependency)
packages to allow for composability.
​ A compiler that turns the surface language into a package containing some sort of
executable bytecode or intermediary language, including template and choice definitions.
​ An interpreter/VM that runs the bytecode.
​ The interpreter is hosted by a canton ledger engine (or just ledger engine), which
is in charge of all (re-)interpretation. The canton ledger engine connects to API, private
contract store (PCS), and consensus client, and hosts the interpreters. It is called by the
API or consensus client to perform a (re-)interpretation. To do so, it acts as a builder for
Daml-LF transactions. For any command (or action) that it needs to interpret, it resolves
the package and any inputs from the PCS, and then calls the appropriate interpreter to
compute metadata or consequences. When the interpreter wants to append a
consequence, it calls a host function provided by the ledger engine, which passes back
control from the interpreter to the ledger engine. The ledger engine can now repeat this
recursively, maintaining a call stack of choices. This illustrates again how the tree of
actions corresponds closely to a call graph of smart contract functions. The ledger engine
is also responsible for checking authorization on the fly.

The contract between ledger engine and interpreter is that computations by the
interpreter need to be fully deterministic. The resulting transactions are thus conformant
by construction. Determinism includes certain safety properties: Isolation between parallel
transitions. Isolation from the system, and similar.

The consensus client can independently take care of consistency checks, and
perform blinding, sequencing, confirmation, and commit.

24

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

The interaction between the ledger engine and the smart contract code running in the
interpreter can be expressed as a series of function evaluations to either pure or update
expressions. The computation of contract and exercise metadata (e.g. signatories) are
pure expressions. They are side-effect free and can neither read, nor update ledger state
beyond the arguments supplied.

signatory expression: (Contract Arguments => [Party])

The choice body is an update expression. The signature of such an expression is similar
to a pure one, but as part of the computation, it can both read and update ledger state by
calling back to the engine to trigger consequences.
​
​ choice body expression: ((Contract Arguments, Exercise Arguments) => Return
Value)

The engine maintains ledger state starting from an initial state S against which
interpretation is run. As update expressions create consequences, a partial transaction T
is built up, and the engine maintains the resulting ledger state S’. Any read operations in
an update expression are performed against the S’ obtained by applying the partial
transaction up to that point to S:

S’ = S + T

The final resulting Daml transaction T is then projected onto Canton views and submitted
as a confirmation request for validation and will only be applied if the interpretation result
based on S is invariant with respect to the actual ledger state at sequencing time S’’ of the
confirmation request. This means that if two transactions race to modify related ledger
state, one of them will fail, which may require a resubmission of the command. This

25

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

resubmission might result in a different transaction due to the fact that the ledger state
changed in the meantime. The advantage of this implementation is the ability to run all
expensive computations and read-write operations in parallel, while restricting the
sequential computation part to in-memory conflict checking, resulting in throughputs well
above 8k actions per single participant node (Daml Enterprise 2.8.0).

3 Daml
The design of the Daml smart contract language was driven by a number of factors laid
out in the Daml whitepaper53. In summary, it allows developers to express the construction
rules of a contract model for Canton concisely, safely, and rapidly as it provides domain
specific primitives for templates, choices, and all their “metadata” like signatories and
observers.
All this needs to be solved under a hard constraint for determinism and safety as covered
in section 2.5. In the years before ecosystems like Cosmos (CosmWasm54) and Polkadot
(Substrate55) in 2019, this was a hard problem to solve. Smart contract blockchains took
one of three approaches, illustrated here by example.

Hyperledger Fabric is designed to simply deal with non-determinism56. This has a great
advantage that it can support any general purpose language. It has the disadvantage that
any non-determinism effectively leads to forks. The chain may contain transactions that
some participants deem invalid. Furthermore, running vanilla general purpose code is
inherently unsafe as it can access the system and perform I/O. Sandboxing in containers
is a way to alleviate this, but realistically, this design restricts smart contracts to trusted
code.

Corda attempted to modify Java, a specific existing general purpose language, to be
deterministic. This required the development of a deterministic Java Virtual Machine
(dJVM)57. This has the same advantage of using a general purpose language as Fabric’s
approach, and removes some of the disadvantages. But this approach has a high cost
and difficulty. After years of development, the dJVM was removed from Corda in 202358.
Secure EcmaScript (SES)59 is another initiative in this direction.

Daml, similar to Solidity for Ethereum, represents the third way by developing an entirely
custom stack, consisting of custom surface language tailor made for the ledger model,
and a fully deterministic, safe, custom engine that exposes a domain specific set of host
functions.

As previously discussed, Canton’s ledger model was historically called the Daml
ledger model as this approach allows tight cohesion between language and ledger model.

59 Secure EcmaScript, GitHub, https://github.com/tc39/proposal-ses
58 Corda 4.11 release notes, https://docs.r3.com/en/platform/corda/4.11/enterprise/release-notes-enterprise.html#djvm-removal
57 dJVM code repo, https://github.com/corda/djvm
56 Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, Elli Androulaki et al, 2018, https://arxiv.org/abs/1801.10228
55 Preparing for Polkadot’s launch with substrate, Blog, 2019, https://polkadot.com/blog/preparing-for-polkadots-launch-with-substrate
54 CosmWasm History, https://cosmwasm.com/home/history/
53

 Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows, Bernauer et al, 2019, https://arxiv.org/abs/2303.03749

26

https://github.com/tc39/proposal-ses
https://docs.r3.com/en/platform/corda/4.11/enterprise/release-notes-enterprise.html#djvm-removal
https://github.com/corda/djvm
https://arxiv.org/abs/1801.10228
https://polkadot.com/blog/preparing-for-polkadots-launch-with-substrate
https://cosmwasm.com/home/history/
https://arxiv.org/abs/2303.03749

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Daml’s stack as presented in section 2.5 consists of the surface language, which will be
introduced by example in section 3.1, a compiler based on the Glasgow Haskell Compiler
(GHC)60, an intermediary language, Daml-LF, that is output by a custom compiler
backend, and the Daml engine. Section 3.2 discusses the technical stack further, in
particular to highlight integration points and modifications for the integration of additional
languages.

Haskell was used as a basis for Daml both for the ease with which domain specific
languages can be embedded in GHC, as well as for Haskell’s compatibility with the
determinism requirement. Pure functional languages are specifically designed to isolate
side effects, which are the primary source of non-determinism.

3.1 Surface Language
The example shown here is the
simple* token and swap model
corresponding to the examples
used in the Canton ledger model
section (2.3).

There are two types of creates in
this transaction, meaning two
templates are needed: Asset and
SwapOffer. Illustrated here is the
Asset.

*A more realistic example with both
the issuers and owners as
signatories requires additional
preparatory steps leading up to the
DvP, and would make it challenging
to compactly illustrate a valid ledger
leading up to the atomic swap
transaction.

60 GHC homepage, https://www.haskell.org/ghc/

27

https://www.haskell.org/ghc/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

-- Asset is a template with a data type carrying the issuer and owner

-- which are Parties as defined in section 2.2.

template Asset

 with

 issuer : Party

 owner : Party

 symbol : Text

 quantity : Decimal

 where

-- The diagram tells us that the issuer should be the signatory.

 signatory issuer

-- The owner should have assets in their private contract store, so

-- they are added as an extra informee to create and consuming archive

-- events. This is done through the observer metadata which works

-- in analogy to signatory.

—- Typically the owner would also be a signatory but for illustration

—- purposes we model the owner as an observer in this example

 observer owner

-- We have a single choice Transfer. Its sole argument is the new owner,

-- and it returns the reference to the newly created output.

 choice Transfer : ContractId Asset

 with

 newOwner : Party

-- The actors for the resulting exercise are specified through the

-- `controller` metadata on the choice.

 controller owner

-- Consequences are computed in the choice body. In this case, the sole

-- consequence is the creation of a new Asset with the new owner.

 do create this with

 owner = newOwner

As we can see from this, Daml encapsulates choices in templates. The choices that apply
to a contract created through a template are expressed on the template itself. This gives
Daml an almost object oriented character, where templates are classes, and choices are
methods.

The Cash template looks identical to Asset so this example uses Asset for both. The
SwapPropsosal is shown here:

template SwapProposal

 with

 from : Party

 to : Party

28

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 swap_from : ContractId Asset
 swap_to : ContractId Asset

 where

 signatory from

 observer to

 choice Accept : (ContractId Asset, ContractId Asset)

 controller to

 do

 -- Check that ownerships match.

 -- `fetch` is another ledger action similar to nonconsuming

 -- exercises which reads active contracts.

 fromAsset <- fetch swap_from
 toAsset <- fetch swap_to

 assert (fromAsset.owner == from)

 assert (toAsset.owner == to)

 swap_from' <- exercise swap_from Transfer with newOwner = to

 swap_to' <- exercise swap_to Transfer with newOwner = from

 return (swap_to', swap_from')

Daml’s IDE has the ability to simulate Canton ledgers in a script, used here to
demonstrate a ledger leading up to a swap:

simulate : Script ()

simulate = script do

 -- Topology transactions to set up identities.

 -- Scripts assume parties are single-hosted

 -- on distinct participants.

 -- Package vetting is not needed in scripts.

 alice <- allocateParty "Alice"

 deborah <- allocateParty "Deborah"

 bank <- allocateParty "Bank"

 csd <- allocateParty "CSD"

 -- Submit first commit to create cash.

 -- `submit party` corresponds to a commit with

 -- `party` as top level authorizer.

 -- Note this is two commands in a single commit.

 swap_from <- submit bank do

 createCmd Asset with
 issuer = bank

29

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 owner = alice
 symbol = "USD"

 quantity = 100.0

 swap_to <- submit csd do

 createCmd Asset with

 issuer = csd

 owner = deborah

 symbol = "ACME"

 quantity = 1.0

 -- Make a SwapOffer via another commit.

 offerCid <- submit alice do

 createCmd SwapProposal with

 from = alice

 to = deborah

 swap_from = swap_from

 swap_to = swap_to

 -- Alice needs to give Deborah details about her asset
 -- in order for her to be able to interpret the swap.

 Some disclosedFromAsset <- queryDisclosure alice swap_from

 -- Swap in a third commit.

 -- Bob needs to augment his private store with information

 -- about Alice's asset.

 submitWithDisclosures deborah [disclosedFromAsset] do

 exerciseCmd offerCid Accept

 return ()

The resulting ledger is exactly the one from 2.3:

30

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

The above presents the Daml language purely as a tool for expressing the Canton ledger
model. A different mental model helpful for many learners of Daml is an analogy with
databases. The below uses postgreSQL syntax to illustrate.

A template’s type corresponds to a table.

 template Asset

 with

 issuer : Party

 owner : Party

 symbol : Text

 quantity : Decimal

 CREATE TABLE Asset(

 id SERIAL PRIMARY KEY,

 issuer TEXT NOT NULL,

 owner TEXT NOT NULL,

 symbol TEXT NOT NULL,

 quantity REAL NOT NULL);

Creates correspond to inserts.

 submit bank do

 createCmd Asset with

 issuer = bank

 owner = alice

 symbol = "USD"

 quantity = 100.0

INSERT INTO Asset (issuer, owner, symbol, quantity)

VALUES (‘Bank’, ‘Alice’, ‘USD’, 100.0)

Contracts/UTXOs correspond to table rows. Archiving/spending a contract corresponds to
deleting rows. There is no equivalent of an update operation on a database.

Signatories correspond to row based write access controls. Observers correspond to row
based read access controls.

31

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 signatory issuer

 ALTER TABLE Asset ENABLE ROW LEVEL SECURITY;

 CREATE POLICY asset_issuers ON Asset

 USING (issuer = current_user);

 observer owner

 CREATE POLICY asset_owners ON Asset

 FOR SELECT

 USING (owner = current_user);

Choices correspond to stored procedures with atomic bodies, exercises to calls.
 choice Transfer : ()

 with

 newOwner : Party

 controller owner

 do

 create this with

 owner = newOwner

CREATE PROCEDURE transfer(asset_id INT, new_owner TEXT)

LANGUAGE SQL

BEGIN ATOMIC

 INSERT INTO Asset (issuer, owner, symbol, quantity)

 (SELECT issuer, new_owner, symbol, quantity

 FROM Asset WHERE id = asset_id);

 DELETE FROM Asset WHERE id = asset_id;

 END;

 exercise swap_from Transfer

 with newOwner = to

CALL transfer(swap_from, newOwner);

There are no exact analogies for choice controllers, and Daml’s authority transfers from
the signatories of an input contract of an exercise to any calls made within its choice body.
Daml templates and choices can also be seen as an API specification since creates and
exercises are the primary actions a user can take via Canton’s ledger API.

3.2 Language Stack
The damlc compiler compiles Daml source code to an intermediary language called
Daml-LF, short for Daml Ledger Fragment. Damlc is implemented using a fork of GHC (a
Haskell compiler). GHC type checks and compiles the Daml source code into terms based
on System-Fω

61, an extension of the simply typed lambda calculus. GHC is configured to
compile Daml code deterministically - this allows participants to verify that uploaded
Daml-LF has been derived from a given or known set of Daml sources.
​
Daml-LF62, when viewed as a term rewriting system, is strongly normalizing. Hence,
Daml-LF is interpreted deterministically to a unique resulting value, regardless of how that
evaluation proceeds.

Daml Packages are the result of compiling Daml source files into module-scoped
Daml-LF expressions, and are stored in Dalf files.

62 Daml-LF specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/spec/daml-lf-2.rst
61 System FC, as implemented in GHC, Simon Peyton Jones, https://gitlab.haskell.org/ghc/ghc/-/blob/master/docs/core-spec/core-spec.pdf

32

https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/spec/daml-lf-2.rst
https://gitlab.haskell.org/ghc/ghc/-/blob/master/docs/core-spec/core-spec.pdf

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Multiple Dalf files may be zipped together, along with some metainformation, to
form a Dar file. Dar files may then be uploaded to Canton participants for vetting and use
by the participant’s Daml engine during, for example, submission, reinterpretation or
replay.
​ Dar files are usually in one to one correspondence with packages and contain the
original compiled Daml source modules, along with all transitive compiled module
dependencies.

Package IDs are the unique hashes (e.g. SHA256) of the Dalf file contents (i.e. the
compiled Daml modules). As Daml source code is deterministically compiled, package IDs
may always be verified by anyone who has access to the Daml sources.

Speedy is Canton’s Daml-LF interpreter. It is an efficient CEK machine63, interpreting the
lfpackage terms using a (non-serializable) internal value model, ultimately producing a
transaction. The speedy interpreter is pure and needs to be hosted in an engine that
connects it to storage and network.

The Daml Engine
performs roughly the role
of the Canton ledger
engine described in
section 2.5. It connects
Speedy to ledger API,
PCS, and consensus
components. The main
delta between the
idealized model shown
in 2.5 and the
implementation is that it is Speedy which builds transactions, not the engine. This is one
of the changes section 4 addresses for the purpose of hosting other interpreters. As the
interpreter and engine build the transaction tree, authorization checks are performed and
a contract state machine is used to validate all potential updates of the participant’s active
contract store.

Daml Engine Builtin Commands are used in Daml-LF to define updating ledger
operations as side effects. These builtin commands allow contracts to be created and
fetched. They also allow sub-transactions to be opened as contract choices start their
evaluation and closed when that evaluation successfully terminates. Should a
sub-transaction's evaluation fail in any manner, the sub-transaction can be closed by
aborting it. A finalized transaction will have no open sub-transactions - i.e. they will all
have been closed or aborted. This paper refers to the collection of Daml-LF and engine
builtin commands as the engine host interface.

63 Distilling abstract machines, Accattoli, Barenbaum , Mazza, 2014, https://dl.acm.org/doi/10.1145/2628136.2628154

33

https://dl.acm.org/doi/10.1145/2628136.2628154

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

When contract choices are exercised, it is important to ensure that sub-transaction
evaluation is isolated. In other words, separate sub-transactions should not interact with
each other except via ledger state. The Daml engine achieves this as:

●​ Daml-LF expressions have no access to state other than via triggering actions,
●​ and the Daml engine shares no internal state when evaluating Daml-LF

expressions.

Daml Engine Resource Safety and Security are ensured by breaking up evaluation into
a series of partial evaluation stages. This allows the Daml engine to be regularly
interrupted allowing Canton participants to control the engine’s compute budget.
Interruptions occur after a fixed number of evaluation iterations by Speedy.

In addition, the Daml engine bounds the depth to which recursive calls may be
made when evaluating Daml-LF expressions. This avoids JVM stack overflows when
evaluating Daml-LF expressions.

To ensure that Canton participant memory resources are resilient to scenarios
where the Daml engine has aggressive memory allocation demands, Canton uses
package vetting. With package vetting, Canton participants only run packages that they
have actively permissioned. Thus, no participant is forced to run untrusted code.

The Daml engine implementation targets the JVM to aid portability and to ensure
that its implementation is decoupled from the host operating system.

The Daml-LF transactions64 produced by interpreter and engine and as introduced in
2.4, are protobuf messages that can be processed further by the consensus client. The
transaction schema captures the tree structure of Canton ledger model actions with all its
metadata. Serializability of Daml-LF transactions is key as its nodes form an integral part
of the confirmation request views which are transmitted over the wire.

Daml-LF values65 are the serializable constant terms that can appear in transactions. It’s
a protobuf AST that describes:

●​ data values such as unit values, booleans, integers, numerics, strings, dates and
timestamps

●​ structured data such as optionals, sorted maps, sorted lists and records (sorted by
field name)

●​ and ledger oriented data values such as contract IDs and parties.

LF values are used to encode:

●​ arguments for template constructor functions
●​ arguments for template choice functions
●​ and result values returned from exercising a contract’s choice function.

65 Daml-LF value specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/value.proto
64 Daml-LF transaction specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/transaction.proto

34

https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/value.proto
https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/transaction.proto

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Decoupling Daml from Canton and allowing additional languages to be supported
requires a clean separation between the Daml-specific parts of this stack and those that
need to be shared by all supported languages for interoperability and integration. Section
4 will demonstrate by example how engine, LF transactions, and LF values can be
decoupled from Speedy and LF terms in such a way that a second language and
interpreter can be hosted with full Daml interoperability.

4 Wasm-based Smart Contracts in Canton
WebAssembly (abbreviated Wasm) is a “safe, portable, low-level code format”66, similar
to JVM ByteCode or Daml-LF. Wasm is used in both web and non-web use cases to run
untrusted code in a strong sandbox67. Two of its properties make Wasm particularly useful
for executing smart contracts:

●​ Deterministic Execution: Applications execute deterministically with a limited set of
well-defined exceptions68. This enables the reinterpretation and validation of
transactions produced by smart contracts where the output of a smart contract
must be consistent across all nodes executing it.

●​ Controlled Side-Effects: By default all applications are pure without any
side-effects. Side-effects are strictly controlled via a set of host functions, which
depend on the use case.

Wasm code is organized in modules69 which include imports and exports. Imports include
functions that the Wasm code requires to be provided by an instance of the Wasm engine,
which could be satisfied with host functions or by loading another module. Exports include
functions that are provided by the Wasm code and can be called by the host (or another
module that imports those exported functions).

Wasm’s safety and structural properties, the many languages that can compile to Wasm,
and its community support make it an ideal candidate for an additional interpreter next to
Speedy.
This section presents initial work70 to integrate the Chicory Wasm runtime71 in Canton and
program Canton native contracts using high level languages like Rust and
AssemblyScript.

Section 4.1 picks up from sections 2.5 and 3.2 to show how engine,
LF-transactions, and LF-values can be decoupled from Speedy and LF-terms such that a
second interpreter can be hosted in Canton. A key property that’s demonstrated here is
the ability to make smart contract calls between Daml contracts and Wasm contracts.
Section 4.1 uses Rust as a surface language to generate Wasm, and interacts with the

71 Chickory Wasm runtime, Github, https://github.com/dylibso/chicory
70 Wasm Engine integration in Canton, Github, https://github.com/digital-asset/daml/pull/20159
69 Webassembly Design Documentation on Modules, https://github.com/WebAssembly/design/blob/main/Modules.md
68 WebAssembly Documentation on nondeterminism, https://github.com/WebAssembly/design/blob/main/Nondeterminism.md
67 WebAssembly Design Documentation on Security, https://github.com/WebAssembly/design/blob/main/Security.md
66 Introduction to the WebAssembly Specification, https://webassembly.github.io/spec/core/intro/introduction.html

35

https://github.com/dylibso/chicory
https://github.com/digital-asset/daml/pull/20159
https://github.com/WebAssembly/design/blob/main/Modules.md
https://github.com/WebAssembly/design/blob/main/Nondeterminism.md
https://github.com/WebAssembly/design/blob/main/Security.md
https://webassembly.github.io/spec/core/intro/introduction.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

engine host interface at a low level, explicitly manipulating the bytestrings used for data
interchange between engine and interpreter.

Section 4.2 explains which of the aspects explained in section 4.1 can be
abstracted away using libraries and code generation to illustrate what a finished
programming experience for Wasm-based Canton smart contracts could look like.

4.1 Wasm Interpreter in Canton
The Chicory Wasm runtime was chosen for integration in Canton both because it is JVM
based, but also because it supports lightweight invocation of many interpreter instances
which is needed to prevent any global state affecting determinism.

As laid out in sections 2.5 and 3.2, there are three primary interactions between engine
and interpreter. Firstly, the interpreter needs to be able to call engine host functions for
consequences, most importantly to create another contract, or to call a choice on another
contract. Secondly, the engine needs to be able to call the interpreter for pure expressions
used for contract and exercise metadata. Thirdly, the engine needs to be able to call the
interpreter for update expressions, most notably for choice bodies.

Host and Guest are used in this section, respectively, to refer to the engine, and the code
running in the Wasm interpreter.

The engine host functions for ledger consequences are specified in a Scala trait:

 trait WasmHostFunctions {

 def logInfo(msg: String): Unit

 def createContract(templateCons: Ref.TypeConRef, args: LfValue): LfValue.ContractId

 def exerciseChoice(

 templateId: Ref.TypeConRef,

 contractId: LfValue.ContractId,

 choiceName: Ref.ChoiceName,

 choiceArg: LfValue,

): LfValue

 }

Pure and update expression evaluation distinctions are enforced through two sets of
host function implementations, one for pure evaluation (PureWasmHostFunctions), and
one for update expressions (UpdateWasmHostFunctions). Calling the host functions in the
pure instance simply results in an error.

 object PureWasmHostFunctions {

 import WasmUtils._

 import internal.WasmRunnerHostFunctions._

36

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 val createContractFunc: WasmHostFunction =

 wasmFunction("createContract", 2, WasmValueResultType) { _ =>

 throw new RuntimeException(

 "Host functions can not be called from pure WASM exported functions: createContract"

)

 }

 val exerciseChoiceFunc: WasmHostFunction =

 wasmFunction("exerciseChoice", 4, WasmValueResultType) { _ =>

 throw new RuntimeException(

 "Host functions can not be called from pure WASM exported functions: exerciseChoice"

)

 }

 }

Data transfer between host and guest is done through memory pointers. WebAssembly
only supports primitive types72 and relies on the application to build complex types, such
as strings or bytestrings, on top of those primitive types.

In this section all data exchange is done via bytestrings, represented as a tuple
(pointer: i32, length: i32). i32 is used as the Wasm memory is currently limited to 32-bit
addressing.

Host functions are limited to returning a single value, therefore a pointer: i32 to the
bytestring tuple is returned. Thus all data interchange between engine and interpreter is
done by passing memory pointers to bytestrings between the host and guest. All this is
taken care of by the wasmFunction construct seen above.

 private[wasm] def wasmFunction(name: String, numOfParams: Int, returnType:
Option[WasmValueType])(

 lambda: Array[ByteString] => ByteString

): WasmHostFunction = {

 new WasmHostFunction(

 (instance: WasmInstance, args: Array[WasmValue]) => {

 require(args.length == numOfParams)

 copyByteString(

 lambda((0 until numOfParams).map(copyWasmValues(args, _)(instance)).toArray)

)(instance)

 },

 "env",

 name,

 (0 until numOfParams).flatMap(_ => WasmValueParameterType).asJava,

 returnType.toList.asJava,

)

 }

72 WebAssembly Documentation on Types, https://webassembly.github.io/spec/core/syntax/types.html

37

https://webassembly.github.io/spec/core/syntax/types.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Explicit memory management between host and guest is required by the Wasm
runtime. This is done inside the copyByteString and copyWasmValues functions above.

 private[wasm] val WasmValueParameterType = List(WasmValueType.I32)
 private[wasm] val WasmUnitResultType = None

 private[wasm] val WasmValueResultType = Some(WasmValueType.I32)

 private[wasm] val i32Size = WasmValueType.I32.size()

 private[wasm] def copyWasmValue(values: Array[WasmValue])(implicit

 instance: WasmInstance

): ByteString = {

 copyWasmValues(values, 0)

 }

 private[wasm] def copyWasmValues(values: Array[WasmValue], index: Int)(implicit

 instance: WasmInstance

): ByteString = {

 require(0 <= index && index < values.length)

 val byteStringPtr = values(index).asInt()

 val ptr = instance.memory().readI32(byteStringPtr)

 val size = instance.memory().readI32(byteStringPtr + i32Size)

 ByteString.copyFrom(

 instance.memory().readBytes(ptr.asInt(), size.asInt())

)

 }

 private[wasm] def copyByteString(

 value: ByteString

)(implicit instance: WasmInstance): Array[WasmValue] = {

 copyByteArray(value.toByteArray)

 }

 private[wasm] def copyByteArray(

 value: Array[Byte]

)(implicit instance: WasmInstance): Array[WasmValue] = {

 if (value.isEmpty) {

 Array.empty
 } else {

 val alloc = instance.export("alloc")

 val valuePtr = alloc.apply(WasmValue.i32(value.length))(0).asInt

 val byteStringPtr = alloc.apply(WasmValue.i32(2 * i32Size))(0).asInt

38

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 instance.memory().write(valuePtr, value)

 instance.memory().writeI32(byteStringPtr, valuePtr)

 instance.memory().writeI32(byteStringPtr + i32Size, value.length)

 Array(WasmValue.i32(byteStringPtr))

 }

 }

In order to obtain a valid pointer in the guest’s memory, the host needs access to memory
allocation and deallocation methods by the guest. The guest module provides an
implementation of memory management aligned with the guest’s language specific
memory constraints and exports those functions to the host. Such a call is visible above in
instance.export(“alloc”).

For example, in Rust, memory allocation and deallocation methods are
implemented as the following, which needs to exclude the allocated memory from Rust’s
ownership-based memory manager, otherwise the memory will be deallocated before the
host can use it.

 pub fn alloc(len: usize) -> *mut u8 {
 let mut buf = Vec::with_capacity(len);

 let ptr = buf.as_mut_ptr();

 std::mem::forget(buf);

 return ptr;

 }

 pub unsafe fn dealloc(ptr: *mut u8, size: usize) {

 let data = Vec::from_raw_parts(ptr, size, size);

 std::mem::drop(data);

 }

The guest code represents the bytestring tuple of pointer and length as:

 #[repr(C, packed)]

 #[allow(non_snake_case)]

 pub struct ByteString {

 pub ptr: *const u8,

 pub size: usize,

 }

Deterministic execution of Wasm based smart contracts is largely supported out of the
box. The execution of a WebAssembly application is deterministic with a few well-defined

39

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

exceptions outlined in the Wasm documentation on nondeterminism73. Features that lead
to nondeterminism such as threads or SIMD are not enabled for the execution of smart
contracts. Nondeterminism stemming from floating point arithmetic and NaN bitwise
representations can be mitigated either by NaN canonicalization by the engine or through
code instrumentation.

However, with projections and sub-transactions in the Canton ledger model there
is another potential source of non-determinism during reinterpretation. Wasm supports
mutable global variables, which in principle allows for the passing of information from one
action to another outside of ledger state and exercise arguments. Different participants
may have different actions as their entry-point of their views of the transaction.
Consequently, participants execute only part of the original Wasm application that
produced the entire transaction in the first place. This could result in different values in
global variables, and thus non-deterministic behavior.

Therefore, it is crucial that the execution of every pure or update expression is
done in a Wasm engine instance that does not have any global state from prior execution.
This is accomplished by creating a new Wasm interpreter for every call both during
interpretation and re-interpretation. Depending on pure or update use, the interpreter is
instantiated with different host function implementations.

 private def PureWasmInstance(): WasmInstance = {
 val imports = new WasmHostImports(

 Array[WasmHostFunction](

 ...

 PureWasmHostFunctions.createContractFunc,

 PureWasmHostFunctions.exerciseChoiceFunc,

)

)

 WasmModule.builder(wasmExpr.module.toByteArray).withHostImports(imports).build().instantiate()

 }

 private def UpdateWasmInstance(): WasmInstance = {

 val imports = new WasmHostImports(

 Array[WasmHostFunction](

 ...

 createContractFunc,

 exerciseChoiceFunc,

)

)

 WasmModule.builder(wasmExpr.module.toByteArray).withHostImports(imports).build().instantiate()

 }

73 WebAssembly Documentation on nondeterminism, https://github.com/WebAssembly/design/blob/main/Nondeterminism.md

40

https://github.com/WebAssembly/design/blob/main/Nondeterminism.md

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Wasm based templates and choices must expose their pure and update expressions
using a naming convention. For example, a template SimpleTemplate must expose the
signatories expression as SimpleTemplate_signatories so that the engine can invoke it
correctly.

The engine can now invoke Wasm-based smart contract code for either pure or update
expressions, exchange arguments and return values, and handle calls to host functions
for consequences in update expressions. An example invocation is shown here:

 val signatories = wasmTemplateSignatoriesFunction
 (templateName, txVersion)(argsV)(PureWasmInstance())

wasmTemplateSignatoriesFunction takes care of the naming convention and return value
unwrapping.

 private[wasm] def wasmTemplateSignatoriesFunction(
 templateName: String,

 txVersion: TransactionVersion,

)(

 contractArg: LfValue

)(implicit instance: WasmInstance): Set[Party] = {

 wasmTemplateFunction(s"${templateName}_signatories", txVersion)(contractArg)

 match {

 case LfValue.ValueList(values) =>

 values

 .map {

 case LfValue.ValueParty(party) =>

 party

 case _ => ...

 }

 .iterator

 .toSet

 case _ => ...

 }

 }

wasmTemplateFunction takes care of bytestring (de-)serialization and passing, and
invokes the Wasm runtime.

 private[wasm] def wasmTemplateFunction(
 functionName: String,

 txVersion: TransactionVersion,

41

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

)(contractArg: LfValue)(implicit instance: WasmInstance): LfValue = {
 val function = instance.export(functionName)

 val contractArgPtr = copyByteString(

 LfValueCoder

 .encodeValue(txVersion, contractArg)

 .fold(err => throw new RuntimeException(err.toString), identity)

)

 val resultPtr = function.apply(contractArgPtr.head)

 try {

 if (resultPtr.nonEmpty) {

 LfValueCoder

 .decodeValue(txVersion, copyWasmValue(resultPtr))

 .fold(err => throw new RuntimeException(err.toString), identity)

 } else {

 LfValue.ValueUnit

 }

 } finally {

 deallocByteString(contractArgPtr.head)

 deallocByteString(resultPtr.head)

 }

 }

 }

Writing Canton smart contracts using Wasm requires:

●​ access to the Wasm host functions for consequences
●​ export guest functions according to the naming convention to the host
●​ no use of any other host functions, in particular no dependency on WASI (Wasm

System Interface)74

Rust is a good choice for low-level integration due to its mature Wasm support and full
control over import and export of functions.
Host functions are declared as external functions by a low-level library, which will result
in entries of the guest’s import table. For example, externally defined function for the
createContract host function:

 extern {

 #[allow(non_snake_case)]

 pub fn createContract<'a>(templateTyCon: &'a ByteString, arg: &'a ByteString) -> &'a

ByteString;

 }

74
 WASI, https://wasi.dev/

42

https://wasi.dev/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

The other engine host functions are similarly defined as external functions.
​ Guest exported functions for memory allocation and deallocation as shown in
Explicit memory management are also provided by the low-level library.

A mid-level ledger update library provides typed access to the engine host functions
and the low-level library uses the basic ByteString type in order to pass data between the
host and guest and this is not convenient to use for a smart contract developer. For
example, here is mid-level createContract function:

 pub fn createContract(templateTyCon: lf::Identifier, arg: lf::Value) -> lf::Value {
 unsafe {

 let templateTyConBytes = templateTyCon.write_to_bytes().unwrap();

 let argBytes = arg.write_to_bytes().unwrap();

 let templateTyConByteString = internal::ByteString { ptr: templateTyConBytes.as_ptr(),

size: templateTyConBytes.len() };

 let argByteString = internal::ByteString { ptr: argBytes.as_ptr(), size: argBytes.len()

};

 let contractIdByteString = internal::createContract(&templateTyConByteString,

&argByteString);

 return utils::to_Value(contractIdByteString.ptr, contractIdByteString.size);

 }

 }

This wrapper performs the necessary steps to convert LF identifiers and LF values into
low-level bytestrings that can be moved across the host-guest boundary.

Similar wrapper functions exist for all the other low-level host functions to record
ledger updates.

Traits for templates and choices defined in the mid-level library define what methods a
smart contract developer has to provide for both contract templates and contract choices.
The template trait in Rust specifies (amongst other things) the need for a list of associated
choices and expressions for signatories and observers:

 pub trait Template<T> {
 fn new(arg: lf::Value) -> T;

 fn choices() -> HashMap<String, Box<dyn Choice>> {

 return HashMap::new();

43

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 }

 #[allow(non_snake_case)]

 fn toLfValue(&self) -> lf::Value;

 fn signatories(arg: lf::Value) -> lf::Value;

 fn observers(arg: lf::Value) -> lf::Value {

 let mut result = lf::Value::new();

 let empty = lf::value::List::new();

 result.set_list(empty);

 return result; // lf::value::List<lf::value::Party>

 }

 }

In full, the template trait captures the required functionality that needs to be implemented
by a smart contract developer:

●​ Creating a new template instance given an LF value argument
●​ Return the template’s identifier
●​ Return the choices defined for this template
●​ Convert the template arguments back to an LF value
●​ Optional preconditions that need to be satisfied by the template’s arguments
●​ Metadata for the signatories, observers, key and maintainers

Similarly, a Choice trait captures:

●​ The kind, indicating if the choice is consuming or not
●​ The exercise function for the choice body that computes the consequences
●​ Metadata for the choice controllers, observers, and additional authorizers.

SimpleTemplate is an example of the implementation of the Template and Choice traits. It
has a contract state that contains an owner party and counter integer:

 pub struct SimpleTemplate {
 owner: String,

 count: i64,

 }

The template is implemented as the following in Rust (excerpt):

44

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 impl ledger::api::Template<SimpleTemplate> for SimpleTemplate {
 fn new(arg: lf::Value) -> SimpleTemplate {

 // SimpleTemplates are created using paired (record) arguments

 let owner = ledger::utils::get_field(arg.clone(), 0).take_party();

 let count = ledger::utils::get_field(arg, 1).int64();

 return SimpleTemplate {

 owner: owner,

 count: count,

 };

 }

 fn choices() -> HashMap<String, Box<dyn ledger::api::Choice>> {

 let mut result = HashMap::new();

 result.insert(String::from("SimpleTemplate_increment"),
 Box::new(SimpleTemplate_increment) as Box<dyn ledger::api::Choice>);

 result.insert(String::from("SimpleTemplate_decrement"),

 Box::new(SimpleTemplate_decrement) as Box<dyn ledger::api::Choice>);

 return result;

 }

 #[allow(unused)]

 fn signatories(arg: lf::Value) -> lf::Value {

 let mut owner = ledger::utils::get_field(arg, 0);

 let mut result = lf::Value::new();

 let mut list = lf::value::List::new();

 list.elements = vec![owner];

 result.set_list(list);

 return result;

 }

An excerpt of the increment choice is shown here:

 impl ledger::api::Choice for SimpleTemplate_increment {

 fn consuming(&self) -> lf::Value {

 let mut result = lf::Value::new();

 result.set_bool(true);

 return result;

 }

45

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 fn exercise(&self, contractArg: lf::Value, choiceArg: lf::Value) -> lf::Value {
 assert!(choiceArg.has_unit());

 let contract = SimpleTemplate::new(contractArg);

 let updatedContract = SimpleTemplate {

 owner: contract.owner,

 count: contract.count + 1,

 };

 return ledger::api::createContract(SimpleTemplate::templateId(),

 updatedContract.toLfValue());

 }

 fn controllers(&self, contractArg: lf::Value, choiceArg: lf::Value) -> lf::Value {

 assert!(choiceArg.has_unit());

 let owner = ledger::utils::get_field(contractArg, 0);

 let mut result = lf::Value::new();

 let mut list = lf::value::List::new();

 list.elements = vec![owner];

 result.set_list(list);

 return result;

 }

 }

Exported guest functions for a template like SimpleTemplate need to follow the naming
convention, and handle input and return values via pointers to ByteStrings.

For example, the signatory computation function for SimpleTemplate:

 impl templates::SimpleTemplate {
 #[no_mangle]

 pub unsafe fn SimpleTemplate_signatories(argPtr: *const ledger::internal::ByteString) ->

*mut ledger::internal::ByteString {

 use protobuf::Message;

 let arg = ledger::utils::to_Value((*argPtr).ptr, (*argPtr).size);

 let result = templates::SimpleTemplate::signatories(arg);

 let resultBytes = result.write_to_bytes().unwrap();

 let boxedResult = Box::new(ledger::internal::ByteString { ptr: resultBytes.as_ptr(), size:
resultBytes.len() });

46

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 std::mem::forget(resultBytes);

 return Box::into_raw(boxedResult);

 }

 }

In the current work, these low-level export functions are hand-written. Automatic
generation with additional tooling is part of future work.

Cross-language smart contract calls are possible and demonstrated in the current
work.
​ The host function for exerciseChoice of the engine dispatches the execution of the
choice’s body either to the Wasm interpreter for Wasm based templates or to Speedy
engine for Daml-based templates. In both cases, the ledger updates are recorded in a
partial transaction builder in the engine.

Contracts written in Rust and executed by the Wasm-based engine can create and
call choices on contracts written in Daml. For this the Rust template must have access to
the template id of the Daml template as well as the choice name. Similarly, Rust-written
choice bodies can create contracts for Daml templates by providing the template id and
contract arguments as an LF value.

The reverse direction will need extensions to Daml in order to reference foreign
templates and choices by id and name in similar fashion.

Cross-interpreter interoperability is generally possible because data exchanged
between Wasm and Daml for template arguments or choice arguments are always in the
existing form of LF values. The engine takes care of transaction building and authorization
checks. It does not matter how updates are produced as long as they are properly
authorized.

In the current work, the template ids, choice’s names and arguments are
hand-written in the Rust code. A standardized way of expressing template and choice
interfaces across languages would enable universal code generation to provide typed
cross-language calls to choices and contract creation.

4.2 High-level Language support
Based on the Wasm interpreter and low- to mid-level Rust work in 4.1, this section covers
the general building blocks required in a surface language for smart contract
development. The goal is to remain as close as possible to a language’s standard
compiler, IDE, development workflow, language syntax and programming model. Access
to the Canton ledger model and concepts for smart contracts are provided in the form of
libraries.

A suitable surface language must have tooling support for Wasm, i.e., to compile down
to Wasm bytecode. To work with the engine’s host interface, it must have the ability to

47

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

define and import host functions, the ability to define an arbitrary number of exported
guest functions, and little or no dependency on other host functions such as WASI. As part
of interacting with the engine, it must also have good support for protobuf
(de-)serialization in order to work with Daml-LF.
​ Low- and mid-level libraries as demonstrated in section 4.1 take care of host
function imports, guest memory management, bytestring representations and pointer
passing, and protobuf (de-)serialization to and from LF values. The results are mid-level
wrappers for templates, choices, and their corresponding host functions (e.g. create and
exercise actions).

AssemblyScript is used here to illustrate just how different the result can look like
between two Wasm-targeting languages like Rust and AssemblyScript, but also to
illustrate a highly accessible high level language experience.
​ The template trait and createContract mid-level function in Rust are represented in
AssemblyScript by a template class with a fully implemented create method. The call to
internal.createContract refers to the low-level library.

export class Template {

 private _arg: LfValue;

 constructor(arg: LfValue) {

 this._arg = arg;

 }

 arg(): LfValue {

 return this._arg;

 }

 create<T>(): Contract<T> {

 let templateIdByteStr = internal.ByteString.fromProtobufIdentifier(

 templateId<T>().toProtobuf(),

);

 let argByteStr = internal.ByteString.fromProtobuf(this.arg().toProtobuf());

 templateIdByteStr.alloc();

 argByteStr.alloc();

 let contractId = LfValueContractId.fromProtobuf(

 internal.ByteString.fromI32(

 internal.createContract(

 templateIdByteStr.heapPtr(),

 argByteStr.heapPtr(),

),

).toProtobuf(),

);

 argByteStr.dealloc();

 templateIdByteStr.dealloc();

 }

48

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

A high-level language experience needs to go further by providing type-safe and
convenient access to host functions, as well as a concise way to specify templates and
choices.

Ledger-specific wrapper types represent the native types in Daml-LF values on top of
language primitive types. For example, Party as a wrapper for strings:

class LfValueParty extends LfValue {

 private _party: string;

 …

}

High level, typed, ledger update methods are created by wrapping values in
parameterized classes like Contract<T> already seen as a return type above. Similarly,
the class Choice<T, A, R> can be parameterized by template, argument, and return types
allowing for fully typed interaction with the ledger.

export class Choice<T, A, R> {

 private _contractArg: T;

 ...

 exercise(arg: A): R { ... }

}

Templates and Choices are implemented by extending the template and choice
classes.

export class SimpleTemplate extends api.Template {

 private owner: string;

 private count: i64;

 constructor(owner: string, count: i64) {

 super(toLfValue<SimpleTemplate>(owner, count));

 this.owner = owner;

 this.count = count;

 }

 signatories(): Set<string> {

 return new Set<string>().add(this.owner);

 }

 choices(): Map<string, SimpleTemplate_increment_closure> {

 return super

 .choices()

49

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 .set(

 "SimpleTemplate_increment",

 new SimpleTemplate_increment(this),

);

 }

}

class SimpleTemplate_increment extends api.ConsumingChoice<

 SimpleTemplate, i64, api.Contract<SimpleTemplate>

> {

…

 exercise(arg : i64): api.Contract<SimpleTemplate> {

 api.logInfo(

 `called AssemblyScript SimpleTemplate_increment(${n}) with count = ${count}`,

);

 return new SimpleTemplate(_contractArg.owner, _contractArg.count + arg).create();

 }

}

Contracts are created and choices are exercised not by calling constructors of the
Template classes or exercise functions on Choice objects, but through create() functions
on template instances as seen above, or by calling the exercise<A>(choiceName : String,
arg : A) function on Contract<T> instances which as per the above represent wrapped
contract Ids. This is crucial to allow the engine to insert the appropriate actions in the
partial transaction.

LF Value Encoding and Decoding should be taken care of for the developer. There are
two approaches for this, both of which still need further investigation. The first is to support
near-arbitrary protobuf messages as contract and choice arguments instead of the current
LF value hierarchy. In that case, the language specific protobuf compiler and
(de-)serializers could be used directly instead of doing any custom encoding.
​ Alternatively, code-generation could be used to generate the LF value codecs that
are hand-written in the current work.

export function toLfValue<SimpleTemplate>(

 owner: string,

 count: i64,

): api.LfValue {

 return new api.LfValueRecord(

50

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 new Map<string, api.LfValue>()

 .set("owner", new api.LfValueParty(owner))

 .set("count", new api.LfValueInt(count)),

);
 }

 export function fromLfValue<SimpleTemplate>(arg: api.LfValue): SimpleTemplate {

 if (isValidArg(arg)) {

 let owner = arg.map.entries[0].value.party;

 let count = arg.map.entries[1].value.int64;

 return new SimpleTemplate(owner, count);

 } else {

 throw new Error(

 `${arg} is an invalid contract argument type for SimpleTemplate`,

);

 }

 }

Code Generation would likely also be used to generate the guest exported functions that
the host must call for each specific pure or update expression that it needs access to, for
example, to execute the body of a choice or retrieve template authorization information.

Based on the template and choice implementations, the following set of guest
exported functions are generated:

●​ TemplateName_(signatories|observers): takes template arguments as serialized
LF value, returns the serialized LF value of a signatories/observers set in the form
of a bytestring

●​ TemplateName_precond: takes the template arguments as serialized LF value and
returns a boolean if the precondition is met.

●​ For each template choice
○​ TemplateName_ChoiceName: takes the template and choice arguments as

LF values serialized to bytestring, returns choice result as serialized LF
value

○​ TemplateName_ChoiceName_consuming: returns boolean
○​ TemplateName_ChoiceName_(controllers|observers): takes template and

choice arguments to return choice controllers/observers as serialized LF
value set of parties.

Convenience for interoperability with Daml and other foreign language templates can
be achieved by generating “facade” contract implementations, that call the appropriate
create and exercise ledger updates using the package id and template identifiers of those
externally-defined templates.

The package id of a Wasm module is computed as the hash of the Wasm module’s
bytes representation, analogous to package ids of Daml packages. We need tooling to
code generate the facade contract implementations based on the package ids, template
arguments and choices.

51

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

To make this possible universally amongst many languages, a common interface
description similar to Ethereum’s application bytecode interface’s (ABI) JSON encoding75
is likely needed. An ABI description of the templates and choices would become a
standard part of packages for all Canton-supported languages, and each language could
generate the facades from that API description.

5 Solidity and EVM support in Canton
EVM compatibility is a much sought after property for public blockchains. Several of the
largest public networks in market capitalization have launched EVM compatibility projects
in the past few years: Solana76, Cardano77, Ripple78, Polkadot79, Near80, Aptos81. Others
have been designed for various degrees of EVM compatibility from the get go: BNB82,
Tron83, Avalanche84, Polygon85.
​ The VeChain documentation86 covers well why EVM compatibility matters for
Developer Adoption and Code Reusability reasons. But it also illustrates a typical
narrative on resulting interoperability, which is only partially true.

Developer Adoption is a common argument for using Java (targeting the JVM). If the
majority of developers in the field are most qualified and most interested in working in
Java, it makes sense to write apps in Java. Easier hiring, easier training, faster ramp up,
faster time to market.​
​ Solidity, the primary language in the EVM ecosystem, has overwhelming market
share in DeFi with over 90% of Total Value Locked (TVL) at the time of writing87. If Canton
Network is to encompass everything from traditional regulated finance to DeFi, being able
to address DeFi developers with minimal friction is of clear value. In the regulated
enterprise space, too, numerous companies have built on private Ethereum clients like
Besu, and thus developed a community of Solidity developers embedded in financial
institutions.

Code Reusability is the second strong argument. The introduction (section 1) argues that
the way to unlock value from blockchain is to move assets and services to a common
venue where they can interoperate through atomic transactions. There are already many
venues, both in the form of public networks, and private permissioned enterprise
networks. So the “move” in the above statement really means “mobilize” by virtue of
making assets multi-venue, not “build from scratch”.
​ If Canton Network is to act as a common venue for traditional, regulated finance
assets and services, traditional assets already tokenized on blockchains, as well as DeFi,
then it must make it as easy as possible for existing blockchain applications to either

87 DeFi Llama Languages, https://defillama.com/languages
86 EVM Compatibility, VeChain documentation, https://docs.vechain.org/core-concepts/EVM compatibility
85 Polygon PoS, Polygon documentation, https://docs.polygon.technology/pos/
84 Port an Ethereum dApp to Avalanche, Avalanche documentation, https://docs.avax.network/dapps/end-to-end/launch-ethereum-dapp
83 Differences from EVM, Tron documentation, https://developers.tron.network/v4.4.0/docs/vm-vs-evm
82 BNB Smart Chain introduction, https://docs.bnbchain.org/bnb-smart-chain/introduction/
81 ByteBabel website, https://pontem.network/bytebabel
80 Aurora website, https://aurora.dev/
79 Frontier Github repo, https://github.com/polkadot-evm/frontier
78 XRPL Sidechain website, https://www.xrplevm.org/
77 Introducing the EVM Sidechain, IOHK, 2022, https://iohk.io/en/blog/posts/2022/07/06/introducing-the-cardano-evm-sidechain/
76 Neon EVM website, https://neonevm.org/
75

52

https://defillama.com/languages
https://docs.vechain.org/core-concepts/evm-compatibility
https://docs.polygon.technology/pos/
https://docs.avax.network/dapps/end-to-end/launch-ethereum-dapp
https://developers.tron.network/v4.4.0/docs/vm-vs-evm
https://docs.bnbchain.org/bnb-smart-chain/introduction/
https://pontem.network/bytebabel
https://aurora.dev/
https://github.com/polkadot-evm/frontier
https://www.xrplevm.org/
https://iohk.io/en/blog/posts/2022/07/06/introducing-the-cardano-evm-sidechain/
https://neonevm.org/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

move to Canton Network wholesale, or to add Canton Network as an additional venue
supported by the app. If the app is built on the EVM stack, then EVM compatibility makes
this significantly easier.

Interoperability with DeFi is often cited as one of the main reasons why EVM
compatibility is important:

Interoperability: EVM compatibility enables different blockchain networks to
communicate and interact with each other. This allows developers to build
decentralized applications that can be used across multiple blockchain networks,
which enhances the interoperability of the entire blockchain ecosystem.

Source: VeChain documentation

The first sentence is a common, but false narrative88. It amounts to arguing that running
two applications on the JVM makes them interoperable. Two EVM-based applications built
on two EVM-compatible chains do not communicate or interact with each with much more
ease than any two applications. Using standards like ERC-tokens and common tooling
like web3.js can make building interoperability solutions easier as access patterns are
uniform across both sides. But that can also be achieved using API-abstraction layers like
Hyperledger Cacti89.
​ The second sentence, however, does allude to a type of interoperability that EVM
compatibility can enable if done right. “applications that can be used across multiple
blockchain networks” describes exactly the idea of multi-venue assets and applications
that Code Reusability enables. If the multi-venue EVM application is able to interact with
native applications on all its venues using smart contract calls, then it can offer meaningful
interoperability. For example, USDC90 provides meaningful interoperability between the
Ethereum and Solana ecosystems. USDC is a multi-venue asset that is natively
interoperable with assets on both sides. A user can freely exchange their USDC on
Ethereum for USDC on Solana through Circle. Thus any asset on Ethereum can be
exchanged with low friction for any asset on Solana by going via USDC. This is not atomic
and does involve an extra counterparty (Circle), but it’s a sound alternative to going
through an exchange and shows how multi-venue applications can provide
interoperability.

Solidity and EVM are two sides of the same coin just like Daml and Canton are. The
language market share statistics above show that Solidity is the only language with
meaningful market share targeting the EVM, and Solidity has one primary compiler91. At
the level of the diagram in section 2.5, the EVM stack then looks rather similar to the Daml
stack.

91 Solidity github repo, https://github.com/ethereum/solidity
90 USDC website, https://www.circle.com/en/usdc
89 Hyperledger Cacti, https://www.lfdecentralizedtrust.org/projects/cacti

88 Solving interoperability in asset tokenisation, Adam Belding, Calastone,
https://www.calastone.com/insights/unlocking-the-future-solving-interoperability-in-asset-tokenisation/

53

https://github.com/ethereum/solidity
https://www.circle.com/en/usdc
https://www.lfdecentralizedtrust.org/projects/cacti
https://www.calastone.com/insights/unlocking-the-future-solving-interoperability-in-asset-tokenisation/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

While the Solidity language at the core uses ECMAScript for its expressions, just like
Daml uses Haskell, it adds many extensions designed to efficiently express the EVM
ledger model, just like Daml has primitives for Canton’s ledger model. The EVM ledger
model is exposed through the Ethereum JSON RPC API, just like the Canton ledger
model is exposed through Canton’s Ledger API. Users and off-ledger app components
interact with the ledger model through that API. Neither app, user, nor developer interact
meaningfully with the actual virtual machine (EVM), nor the EVM bytecode (contracts).

Valuable EVM compatibility for Canton Network, in light of the above and the potential
for EVM privacy on Canton discussed in section 1, therefore consists of:

Solidity support, meaning the ability for developers to reuse as much Solidity code as
they can, with as few alterations as possible, and having it executed faithfully on Canton
according to the EVM ledger model.

JSON RPC API support, meaning the off-ledger components can interact with Solidity
contracts and the EVM ledger model running on Canton in a way that is as faithful as
possible to Ethereum.

Native interoperability, meaning Solidity contracts running on Canton can make atomic
smart contract calls to native Canton contracts and vice versa.

Controls, meaning the nodes that participate in the consensus on Solidity contracts
running on Canton can be configured freely.

Privacy and Confidentiality, meaning the contract state of different Solidity contracts is
distributed selectively, just like Canton contracts are distributed selectively. The observers
of Solidity contract state can be configured freely.

Given the differences between the Canton and Ethereum ledger models and tech stack
below the level presented above, there are numerous challenges to overcome, but with
the potential to add privacy and control to EVM contracts, there are also interesting

54

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

opportunities beyond the adoption and code reusability of regular EVM compatibility. The
rest of this section presents a high level plan for building up EVM compatibility in Canton.
​ Section 5.1 covers the work involved in laying the groundwork for running any
Solidity on Canton, by making pure Solidity code reusable. It’ll cover how even this
already allows for significant code reuse for real world applications, with native
interoperability.
​ Section 5.2 will cover the relatively short gap between running pure Solidity code,
and Solidity contract support with native interoperability as described above, achieved
through coarse ledger model mapping. It’ll cover the limitations of this approach, but also
show how this provides coarse but important privacy and confidentiality properties beyond
any other EVM compatible ledgers.
​ Section 5.3 will talk about JSON RPC API support. This is a critical component in
solving for code reusability, but technically it is the most mundane.
​ Section 5.4 expands on 5.2, describing how Ethereum’s storage trie structure
might be used to perform much more fine-grained ledger model mapping, lifting some of
the limitations in 5.2, but also leading to fine-grained confidentiality for Solidity contracts.
Such fine-grained mapping will likely need to be supported by developer annotations to
specify visibility of different parts of Solidity contract state and events.

5.1 Manual EVM Orchestration
The foundation for EVM compatibility is the ability to execute Solidity code inside a virtual
machine supported by Canton, and to call that code from choice bodies of Canton native
contracts, in particular. This would allow Solidity code to be used as a library in Canton
smart contracts written in another language. How much code reuse this would allow
depends on the code base in question, but it may be significant. Take, for example, the
ForgeBond contract92 developed for the bond issuance by the SocGen Forge for the EIB
bond issuance93. The code base consists of a single contract (ForgeBond). The contract
has a state encoded in four structs:

 BasicTokenLibrary.BasicToken private token;

 BasicTokenLibrary.Bond private bond;

 OperatorManagerLibrary.OperatorManager private operatorManager;

 SettlementRepositoryLibrary.SettlementTransactionRepository

 private settlementTransactionRepository;

Beyond manipulating these structs, the only interaction with the blockchain is I/O via
emitting events.

Basic Reuse of such a contract on Canton is to manually orchestrate an EVM to

1.​ Deploy the Solidity contract.
2.​ Manipulate and read from the Solidity contract by calling functions on it.
3.​ Read and process emitted events.

93 Digital Innovation In Capital Markets, Societe Generale, European Investment Bank, Forge,
https://www.ecb.europa.eu/paym/groups/pdf/omg/2022/220922/Item_2%20_Digital_Innovation_in_Capital_Markets.en.pdf

92 ForgeBond source code via Blockscan, https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

55

https://www.ecb.europa.eu/paym/groups/pdf/omg/2022/220922/Item_2%20_Digital_Innovation_in_Capital_Markets.en.pdf
https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

This effectively already allows for manual implementations of the patterns proposed in 5.2
and 5.4 by adding a new constructor, and a new read function on the contract to extract
state in bulk. For an app like the aforementioned EIB bond which has a single contract
with state encapsulated in four structs, and with 125 transactions in its entire lifetime94,
manually implementing the pattern in 5.2 is not a hard problem, presents no scalability
issues, and would allow for a lift-and-shift of the smart contract code to Canton with little
overhead.

Calling the EVM from within a Rust-written Wasm contract for Canton might follow a
similar pattern to ethcontract-rs95. Here an illustrative example how a contract might be
instantiated and manipulated:

// Illustrative EVM interaction from Canton

// Inspired by ethcontract-rs

use web3::types::*;

use canton::evm::transaction::Address;

// macro to generate a `MyContract` type consisting of bytecode,

// linking to an isolated evm instance, and type-safe bindings to

// contract functions.

// Take some ERC20 sample as an example.

canton::evm::contract!("path/to/MyERC20.json");

// ...

//In the context of a choice:

// Artificial addresses, which may be read from the contract state.

let owner: Address = "0x0".parse()?;

let receiver : Address = "0x1".parse()?;

// now create an instance of a solidity contract

// assuming an empty constructor.

let erc20 = MyERC20::deploy().from(owner).execute();

// Call a mutating function

erc20.transfer(receiver, 1_000_000.into()).from(owner).execute();

// Call a view function

erc20.balanceOf(receiver).from(owner).execute();

// Get events

let mut transfers = erc20

95 ethcontract-rs GitHub repo, https://github.com/cowprotocol/ethcontract-rs/tree/main
94 ForgeBond on Etherscan, https://etherscan.io/address/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

56

https://github.com/cowprotocol/ethcontract-rs/tree/main
https://etherscan.io/address/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 .events()
 .transfer()

 .from(Topic::This(owner))

 .execute();

Hosting Solidity, as illustrated by section 4, can be done in one of two ways. Either one
can compile Solidity to an existing smart contract engine, or one can embed a new smart
contract engine that supports the language in question. Concretely, assuming Wasm
support is present, this means either hosting an EVM implementation in Canton
participants as a separate VM, compiling Solidity to Daml-LF, compiling Solidity to Wasm,
or running an EVM inside the Daml or Wasm engines. There is no prior art for the Daml
options so they are unlikely paths. Canton is JVM-based, and community support for
JVM-hosted EVMs does exist, so hosting the EVM as a separate virtual machine next to
Daml and Wasm is one option. Building on Wasm also seems possible thanks to well
maintained open source projects, both already in use in the Polkadot ecosystem. This
presents a total of three possible options:

Cross-compilation via Hyperledger Solang96, an open source Solidity compiler targeting
non-EVM bytecode, is one possible route. Solang has an existing compiler backend
targeting Wasm bytecode built to target Polkadot.

EVM-hosting inside Wasm using Rust EVM97 (also known as SputnikVM) is another
route. It claims to be hostable in WebAssembly (Wasm), and forms the core of the
Polkadot Frontier EVM compatibility layer98.

EVM-hosting as a separate VM inside the JVM, for example based on Hyperledger
Besu99.

Either of these approaches is likely to go a long way towards being able to instantiate and
read Solidity types in a Wasm-hosted smart contract language, and to deploy and call
Solidity contracts from that host.

EVM host function implementation will be the biggest challenge beyond basic
integration, independent of which approach is taken. The host functions of the Rust
EVM100 as well as their implementation in Frontier’s EVM stack-based runner101 illustrate
the complexity of doing so. For the purpose of the manually orchestrated EVM, the
storage backend can likely be kept to a simple in-memory store. The host functions not
related to storage are largely context related and exposed in Solidity via block and

101 Frontier implementation of Rust EVM backend on GitHub, https://github.com/polkadot-evm/frontier/blob/master/frame/evm/src/runner/stack.rs
100 Rust EVM Runtime Backend Traits on GitHub, https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs
99 Hyperledger Besu, GitHub repo: https://github.com/hyperledger/besu/
98 Frontier documentation, https://github.com/polkadot-evm/frontier/blob/master/frame/evm/README.md#evm-engine
97 Rust EVM GitHub repo, https://github.com/rust-ethereum/evm
96 Hyperledger Solang, GitHub repo: https://github.com/hyperledger/solang, Docs: https://solang.readthedocs.io/

57

https://github.com/polkadot-evm/frontier/blob/master/frame/evm/src/runner/stack.rs
https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs
https://github.com/hyperledger/besu/
https://github.com/polkadot-evm/frontier/blob/master/frame/evm/README.md#evm-engine
https://github.com/rust-ethereum/evm
https://github.com/hyperledger/solang
https://solang.readthedocs.io/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

transaction properties102. The majority can be zeroed out or not supported for EVM
support in Canton:

Property / Function Canton Mapping

blockhash(uint blockNumber) returns
(bytes32)
block.number (uint)

Not supported. Always returns 0.
See 5.4 for reasons.

blobhash(uint index) returns (bytes32)
msg.data (bytes calldata)
msg.sig (bytes4)

No special treatment needed.

block.basefee (uint)
block.blobbasefee (uint)
block.difficulty (uint)
msg.value (uint)
tx.gasprice (uint)

Always returns 0.

block.chainid (uint) Always 0 in library mode.
Hash of the EVMInstance contract key in
section 5.2 and beyond.

block.coinbase (address payable) Equals tx.origin.

block.gaslimit (uint)
gasleft() returns (uint256)

Maximum integer value.

block.prevrandao (uint) Not supported.

block.timestamp (uint) Canton Ledger Effective Time

msg.sender (address)
tx.origin (address)

Always 0 in library mode.
Starts with calling party address in 5.2 and
beyond.

Manual EVM orchestration allows for broad code reuse of Solidity contracts in Canton. But
it is left to the developer to extend their Solidity code with appropriate state im- and export
functions, and to map storage and events to Canton native constructs. To get to true lift
and shift code reusability as well as seamless interoperability between Solidity and
Canton Native contracts, additional functionality and pre-packaged patterns are needed.
These are demonstrated in sections 5.2 and 5.4.

102 Solidity Block and Transaction properties, https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties

58

https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

5.2 Coarse Ledger Model Mapping
The EVM is a state machine. It has an internal state S, and every function either reads
from S via function r(S), or it writes to S, mutating the state to some function of S, S’ =
w(S).

Source: Ethereum Whitepaper

This makes it relatively straightforward to use the capabilities from section 5.1 to
functionally map the EVM ledger model to the Canton ledger model, or indeed any UTXO
model. A single UTXO which keeps the entire EVM state S and gets consumed and
re-created with data S’=w(S) by any function call to w behaves exactly like the state
machine.
​ If it were possible to read and load EVM state wholesale from a Canton
serializable value, one could write a Canton contract representing an EVM instance as
follows. While this is likely to happen from within a Wasm-hosted language, the below
uses Daml syntax for its conciseness.

template EVMInstance

 with

 sigs : [Party]

 obs : [Party]

 state : EVMState

 where

 signatory sigs

 observer obs

59

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 nonconsuming choice Call : (ContractId EVMInstance, [EVMEvent])
 with

 signedTx : EVMSignedTX

 caller : Party

 controller caller

 do

 evm <- initializeEVMFromState state

 h <- stateRootHash evm

 events <- submitSignedTx evm signedTx

 h' <- stateRootHash evm

 forA_ events (\event -> exercise self Emit with event)

 if h == h'

 then return (self, events)

 else do

 archive self

 state' <- evmState evm

 self' <- create this with state = state'

 return (self', events)

 nonconsuming choice Emit : ()

 with

 event : EVMEvent

 observer obs

 controller sigs

 do ()

The function submitSignedTx is already enabled by 5.1. The serializable EVMState and
EVMSignedTx types as well as the functions initializeEVMFromState, evmState, and
stateRootHash are relatively minor extensions to the work in 5.1. The above template
could be made available as a library to enable Solidity contracts on Canton without any
custom development.

EVM Events in the above are made available via the Canton Ledger API as
non-consuming choices on the EVM instance.

One-way Interoperability between Canton native contracts and EVM is already given by
the above. Canton contracts can call into EVM instances. This enables constellations of
privacy and atomicity beyond any other private Ethereum implementation today.

Returning to the DvP example from earlier, we imagine Issuer1 has developed a
payment system, and Issuer2 has developed a bond token. Each token should be visible
to and validated by small, nonidentical groups of entities. One entity, called Exchange in

60

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

this example, with visibility into both tokens, offers swap/exchange services. Alice and Bob
have entered into a trade.

With the above EVMInstances on Canton, this is easy. Issuer1 and Issuer2 each
deploy an EVM instance with them as the respective signatory and the Exchange as a
common observer. Alice and Bob independently allocate funds to the trade by delegating
them to the Exchange. The Exchange can send two Canton commands, or call the two
EVM instances from a single choice and thus make the two transfer calls in a single
atomic transaction. Issuer1 and Issuer2 see only the transfers on their respective EVM
instances.

Contrast this with today’s capabilities of subnets, rollups, groups, channels, or
private Ethereum instances. The two transfers have to happen in two independent
transactions. De facto, the exchange has to act as a central counterparty, facilitating
traditional non-atomic clearing and settlement. The exchange can reduce the risk of partial
settlement by implementing custom protocols like hashed timelock contracts103, but they
cannot eliminate it.

Authorization in the above is solved crudely in that it does not link Canton’s authorization
model with the EVM’s. The addresses in the EVM are EVM externally owned addresses
(EOA), and a signed Ethereum transaction has to be passed through a Canton command.
As a result, in the above example, the exchange is the only guarantor of atomicity of the
swap. They could choose to send a single transfer command rather than both. It would be
nicer if the trading parties, which may be financial institutions themselves, could
participate in consensus and thus guarantee atomicity for themselves. In other words, it
would be preferable if the trading parties themselves would have to authorize the call to
the EVM instead of delegating the funds to the exchange.

This can be accomplished with identity mapping between parties and addresses,
not requiring a signature on the EVM translation, and instead setting the EVM’s tx.origin
(and initial msg.sender) to be the controller party of the Call choice. One could call such
addresses Canton Party addresses to distinguish them from EOAs.

 events <- submitTx evm caller tx

In the EVM, an address is a 160-bit fingerprint of a public key. It would be natural

to translate a Canton Party to an EVM Address by taking a 160-bit hash of the full party
identifier. With this capability in place, the Swap could be conducted as if it were a Swap
between Canton native tokens. Note that in this scenario, the fromParty and toParty will
see the EVM instances being manipulated, so they learn of the token state at the point of
the swap. Section 5.4 will address this topic.

template EVMSwap

 with

 fromParty : Party

 toParty : Party

103 Lightning Networks Part II: Hashed Timelock Contracts (HTLCs), Rusty Russell, 2015,
https://rusty.ozlabs.org/2015/04/01/lightning-networks-part-ii-hashed-timelock-contracts-htlcs.html

61

https://rusty.ozlabs.org/2015/04/01/lightning-networks-part-ii-hashed-timelock-contracts-htlcs.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 exchangeParty : Party
 fromToken : EVMAddress

 toToken : EVMAddress

 fromAmount : Decimal

 toAmount : Decimal

 where

 signatory fromParty, toParty, exchangeParty

 choice Swap : ()

 with

 fromEVM : ContractId EVMInstance

 toEVM : ContractId EVMInstance

 controller exchangeParty

 do

 exercise fromEVM Call with

 tx = toERC20Transfer (fromToken, fromAmount, toParty)

 caller = fromParty

 exercise toEVM Call with

 tx = toERC20Transfer (toAddress, toAmount, fromParty)

 caller = toParty

Full Interoperability requires the ability to call from EVM instances to Canton native
contracts, and equivalently from EVM instance to EVM instance. The above already hints
at one of the challenges to be overcome, which is addressing. The EVMAddress types
above refer to smart contracts within the EVM instances. In a single EVM, addresses are
unique. With the potential for multiple EVM instances, we have to make sure they are also
unique in Canton and can be resolved to the right EVM instance.

Smart Contract Addresses in the EVM are also 160-bit hashes as introduced for Party
mapping above. They are a hash of the sender’s address plus the sender’s nonce used
for the contract deployment. A similar scheme might be possible for Canton, but has the
challenge that to avoid the same address existing in two EVM instances, each Party
would need to maintain a global nonce. A likely better alternative is to calculate smart
contract addresses not only from sender and nonce, but from the triple (sender, sender
nonce in EVM instance, EVM instance Id).
​ This leaves open how EVM instances are identified. A natural choice would be to
use Daml’s contract keys, and rely on the signatories of an EVM instance to ensure
uniqueness of the identifier. This context could be passed into every EVM call so that
addresses could be computed appropriately.

template EVMInstance

 with

62

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 uuid : Text
 sigs : [Party]

 obs : [Party]

 state : EVMState

 where

 signatory sigs

 observer obs

 key (uuid, sigs) : (Text, [Party])

 maintainer key._2

 nonconsuming choice Call : (ContractId EVMInstance, [EVMEvent])

 with

 callData : EVMCallData

 caller : Party

 controller caller

 do

 evm <- initializeEVMFromState state (key this)

EVM instance resolution still requires some sort of persistent index, which would need to
be provided by the hosting participant, further simplifying the Swap choice.

 choice Swap : ()
 controller exchangeParty

 do

 callEVMAddress fromToken with

 tx = toERC20Transfer (fromAmount, toParty)

 caller = fromParty

 callEVMAddress toToken with

 tx = toERC20Transfer (toAmount, fromParty)

 caller = toParty

Note that ignoring the explicit caller party, this is now equivalent to a contract call within
Solidity itself.

fromToken.transfer(toAddress, 1000);

The Canton-hosted EVM (or Wasm code) can thus make a dynamic choice. If the
fromToken address is known in the current EVM instance, call it EVM-instance internally. If
it is not, insert an exercise node corresponding to a callEVMAddress fromToken with the
tx.origin being carried over, and msg.sender set appropriately.

EVM-to-Canton calls would require an always-available pseudo-contract in each
EVM-instance, likely at a fixed address. Calls to this pseudo-contract would need to be

63

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

intercepted by the host and treated appropriately. Such a call would have the authority of
the party used in tx.origin.

pragma solidity ^0.8.3;

// Canton library and interface provided out of the box

library Canton {

 address constant canton = 0x0000000000000000000000000000000000000001;

 ICanton constant interfaceContract = ICanton(canton);

 struct CantonCall {

 string cid;

 string choice;

 bytes args;

 }

 function call(CantonCall memory params) returns (bytes memory ret) {

 interfaceContract.callCanton(params);

 }

}

interface ICanton{

 function callCanton(Canton.CantonCall memory params)

 returns (bytes memory ret) ;

}

// User code

contract Caller {

 constructor () public {}

 function interactWithCanton () {

 bytes ret = Canton.call(CantonCall(foo, bar, baz))

 }

}

Code Generation could be used either side to make EVM - Canton and Canton - EVM
calls more type safe. The way this might work to call an EVM contract from Canton was
already demonstrated using Rust syntax in 5.1. Vice versa, creating appropriate EVM
structs for data types of Canton-native template and choice arguments and return types
would make it easier to handle calls than needing to en-/decode bytes.

The above construct is highly powerful in that it allows EVM execution in Canton with
privacy, and enables two-way interoperability between Canton native and EVM contracts.
However, it has three limitations.

64

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

Contention is a problem account based ledger models like EVM and UTXO based ledger
models like Canton solve differently. In UTXO models, commands are interpreted before
ordering. Contention is detected through collision detection on UTXOs and attempted
double spends are rejected. To get low contention, developers need to break up the state
into appropriately small UTXOs. Account based models like EVM interpret commands
after ordering. This has downsides like reordering and frontrunning attacks, and harder
parallelizability, but it also has the upside that transactions don’t fail due to simple
write-write contention or even read-write contention. Translating the ledger model to
UTXO as proposed here means that every two writes to a single EVM instance contend
with each other. As a consequence, throughput on a single EVM instance is limited. Going
back to the throughput requirements of a token like the EIB bond, this is unlikely to be a
practical issue for initial lift-and-shift uses. Section 5.4 will address this limitation.

Reentrancy104 is both a major feature of the EVM as well as one of its bigger security
flaws. UTXO based ledgers like Canton do not allow for re-entrancy. Since a single EVM
instance in the above is archived and re-created exactly once for a call, re-entrancy within
a single EVM instance works just fine. However, re-entrancy between two EVM instances
will fail. Say there are EVMInstance contracts A and B. A function foo within A calls to a
function bar within B, which in turn calls a function baz within A. Both the calls to foo and
baz will attempt to archive A through the archive self call inside the Call choice. This is a
double spend in the UTXO model and will therefore not work.
​ This is a form of contention as the original call to A, and the re-entrancy from bar
are treated as two separate calls, and thus run into write-write contention. As such, 5.4 will
also address some reentrancy limitations.

Privacy and Confidentiality in this model is already superior to “private EVM” ledgers in
that atomic transactions across different stakeholder sets are possible while maintaining
privacy as seen in the DvP example.
​ However, the DvP example also shows that the privacy achieved here is inferior to
Canton’s native capabilities. With Canton’s native sub-transaction privacy Alice and Bob
can participate in consensus on the Swap while only learning about the details of the
Swap that they know anyway. In the coarse ledger mapping presented here, Alice and
Bob learn the entire EVMInstance state if they participate in consensus.

Scalability could become an issue for large Solidity contracts. Canton is optimized for
small data payloads on contracts. While it has been proven to work with single contracts
storing upwards of 100MB, most synchronizers limits message sizes to just 10MB, which
includes both input and output contracts. So in practice, to perform a DvP, the total data
on each of the two involved EVM instances will need to be below 2MB. Assuming an
optimal 64 bytes per balance entry (256 bit each for slot hash and value), a simple
ERC20 token would hit this limit at around 16384 balance entries. That’s a non-trivial

104 Re-Entrancy, Solidity by Example, https://solidity-by-example.org/hacks/re-entrancy/

65

https://solidity-by-example.org/hacks/re-entrancy/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

number and sufficient for many of the non-stablecoin Real World Assets (RWAs) today,
but doesn’t even come close to supporting a retail stablecoin like USDC.

Summarizing this section, building on the basic ability to instantiate and call EVM
instances from Canton native contracts, it is possible to automatically generate contract
and identity mappings that allow for functional lift-and-shift of EVM contracts to Canton.
Canton’s smart contract interoperability and privacy capabilities are transferable to these
EVM instances allowing for atomic transactions spanning multiple EVM instances and
Canton native contracts with different validator and observer sets. While some limitations
will require developers to decide carefully how to partition their EVM code into EVM
instances on Canton, and how to construct settlements to maintain privacy, this construct
offers capabilities beyond any other EVM ledger, as well as EVM-compatibility and
interoperability of Canton at a high fidelity.

5.3 API Wrappers
Off-ledger integration with Solidity contracts
happens via the Ethereum JSON RPC105. To fully
address the developer adoption and code reusability
goals stated in the introduction of section 5, Canton
must expose the Ethereum JSON RPC to interact
with EVM instances running on Canton. The most
likely approach for doing so is a proxy pattern similar
to the Neon EVM targeting Solana106.
​ For Canton, this involves putting an API
proxy in front of Canton’s Ledger API. The proxy
consumes data from the Ledger API, possibly stores
and indexes it in a form of persistent cache, and
exposes read methods to clients. Vice versa, it takes
calls to write methods and converts them to Ledger
API Commands.
​ Since some Ethereum RPC methods require
running smart contracts (e.g. eth_call), such a proxy
also needs to run the smart contract engine that
handles EVM contracts. Since the Ethereum JSON
RPC is designed for a single EVM instance, a
separate endpoint would be provided per EVM
instance on canton, for example using the chain id (hash of EVMInstance contract key) as
URL path.

The most important RPC methods for integration are the gossip, state, and history APIs
that respectively allow for writing to an EVM chain, reading current state, and navigating
historic state. The UTXO mapping from section 5.2 ensures that historic EVM Instance

106 Neon EVM docs, How it works, https://neonevm.org/docs/about/how_it_works
105 Ethereum JSON RPC docs, https://ethereum.org/en/developers/docs/apis/json-rpc/

66

https://neonevm.org/docs/about/how_it_works
https://ethereum.org/en/developers/docs/apis/json-rpc/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

state is available via Canton’s Ledger API. The Canton <> EVM interoperability and
addressing ensure that EVM transactions can be submitted through the Ledger API.

Blocks don’t exist in Canton as they do in Ethereum, and blocks feature heavily on all
three types of API methods. However, transactions on a single contract like an
EVMInstance are consistently totally ordered for all signatories, so for API purposes, one
can treat transactions as blocks and convert transaction ids into block ids through
appropriate hashing: Ethereum Block Hash = H256(canton transaction id).
​ While block numbers are not available in Solidity (see section 5.1) to avoid
contention in preparation for section 5.4, the JSON RPC Proxy could assign sequential
block numbers to transactions affecting an EVM instance and thus also serve the RPCs
that are ByNumber, and not ByHash.
​ Canton’s consensus has instant deterministic finality so block default parameters
map to either the earliest available EVMInstance state, latest committed EVMInstance
state, or the given block number.
​ The lack of blocks also implies the lack of uncles107. All RPCs dealing with uncles
would behave as if there are no uncles.

EVM transactions do not correspond one to one to Canton transactions. A single Canton
transaction may contain multiple EVM transactions on a single EVM instance, as well as
EVM transactions on multiple EVM instances. Due to the lack of re-entrancy across EVM
instances, EVM transactions do, however, correspond one to one to Call exercises on
EVMInstance contracts. Thus the RPC Proxy can appropriately hash, and index those
events to serve EVM transactions both by Hash and Number, and serve EVM transaction
receipts.

Block data doesn’t exist as such. Thus when requesting a block by hash or number. The
RPC would populate data like this:

number: QUANTITY See above.

hash: DATA, 32 Bytes Canton transaction id hash.

parentHash: DATA, 32 Bytes Canton transaction id hash of the previous
transaction that changed the same EVM
instance.

nonce: DATA
sha3Uncles: DATA, 32 Bytes
logsBloom: DATA, 256 Bytes
transactionsRoot: DATA, 32 Bytes
stateRoot: DATA, 32 Bytes
receiptsRoot: DATA, 32 Bytes

null/0

107 What are uncle blocks, Alchemy documentation, https://docs.alchemy.com/docs/what-are-uncle-blocks

67

https://docs.alchemy.com/docs/what-are-uncle-blocks

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

miner: DATA, 20 Bytes
difficulty: QUANTITY
totalDifficulty: QUANTITY
extraData: DATA
size: QUANTITY
gasLimit: QUANTITY
gasUsed: QUANTITY

timestamp: QUANTITY Canton Ledger Effective Time

transactions: Array Implemented faithfully.

uncles: Array []

Transaction signing and its interplay with offchain components is core to the way
Ethereum is integrated in user experiences and security solutions. The identity mapping in
5.2 means that Canton Party addresses are no longer public key fingerprints.
Furthermore, the Canton Ledger API expects a signed Canton transaction or JWT-based
authentication against a participant that hosts the submitting party in submission mode, so
a signed Ethereum transaction does not help to authenticate against the Canton Ledger
API.
​ To support Ethereum externally owned addresses (EOAs) securely, a unique party
would have to be generated from the key corresponding to the EOA. This could be done
by taking the EOA private key as a Canton namespace root key, and reserving some
special prefix to designate the party corresponding to the EVM address. Suppose a user
has generated private key P corresponding to address A. The user could now onboard
their wallet to Canton by creating a namespace N from private key P’s public key
fingerprint, and allocate a party (“eth_address”, N), where “eth_address” is a hard-coded
reserved party name. They would furthermore have to write a delegation contract to the
ledger, which allows the proxy provider to submit signed EVM transactions with that
party/address combination. This allows the proxy provider to authenticate against the
Canton Ledger API using their own party (proxy_operator below).

template EVMProxyDelegation

 with

 eth_address_party : Party

 proxy_operator : Party

 where

 signatory eth_address_party

 observer proxy_operator

 nonconsuming choice DelegatedCall : ()

 with

 evm : ContractId EVMInstance

 callData : EVMCallData

 controller proxy_operator

68

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 do

 validateEthSignatureForParty eth_address_party callData

 exercise evm Call with

 callData = callData

 caller = eth_address_party

Such a construct would allow Ethereum wallet clients like MetaMask to work with

Canton hosted EVMs and even interact with Canton native contracts through on-ledger
interoperability. The key owner could set up the same key for external signing of Canton
native transactions, providing a unified wallet across EVM and canton native assets.

Summarizing, a JSON RPC proxy constructed like this would be able to serve the core
gossip, state, and history RPC methods to a degree of compatibility that supports lift and
shift of Ethereum application to Canton with only minor caveats or modification.

Users could interact with a single unified ledger through Canton or EVM native
interaction patterns or APIs, up to and including using the same signing key Canton and
EVM native interactions offering something akin to a unified wallet across tokens native to
the different ledger models.​

5.4 Fine grained mapping with added privacy
The limitations in section 5.2 are all a result of the coarse state mapping of one EVM
instance to one Canton contract. Such monolithic UTXOs go against the general ethos
and design of eUTXO systems. To solve the contention issue, in particular, data has to be
structured into Canton contracts in such a way that transactions by two users do not
attempt to consume any common contract. A simple ERC-20108 token serves as an
example.

contract ERC20 is IERC20 {

 event Transfer(address indexed from, address indexed to, uint256 value);

 event Approval(

 address indexed owner, address indexed spender, uint256 value

);

 uint256 public totalSupply;

 mapping(address => uint256) public balanceOf;

 mapping(address => mapping(address => uint256)) public allowance;

 string public name;

 string public symbol;

 uint8 public decimals;

 constructor(string memory _name, string memory _symbol, uint8 _decimals) {

108 Solidity By Example, ERC-20, https://solidity-by-example.org/app/erc20/

69

https://solidity-by-example.org/app/erc20/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 name = _name;

 symbol = _symbol;

 decimals = _decimals;

 }

 function transfer(address recipient, uint256 amount)

 external

 returns (bool)

 {

 balanceOf[msg.sender] -= amount;

 balanceOf[recipient] += amount;

 emit Transfer(msg.sender, recipient, amount);

 return true;

 }

Contention free transfers would require the state corresponding to each map entry in
balanceOf to be stored in a separate Canton contract. The only contract state mutated by
transfer are the balanceOf entries corresponding to message sender and transfer
recipient. If address 0x01 transferred funds to address 0x02, and address 0x03
transferred funds to 0x04, then those four pieces of state would reside on separate
Canton contracts. The two transactions would consume disjoint Canton contracts and not
contend on the balances.
​ To extend this to the transaction as a whole, the transaction must not consume any
other shared Canton contracts. In particular, the “global” state of the ERC-20, meaning
totalSupply, name, symbol, decimals must not be consumed, nor must any other map
entries. And there must not be any mutable shared state on the EVMInstance itself. This
is the primary reason that the EVM in Canton would not make available block numbers or
block hash. Nor can World State or Account State hashes for contract address be stored
on the blockchain. More on those below.

High Scalability would also be achieved by storing the balances of different asset holders
in separate UTXOs. The balanceOf (and allowance) maps represent the vast majority of
the state of a typical token. If this state is broken up across many Canton contracts, only a
few of which are used as inputs to a transfer, then individual transactions and contracts
can stay small in size and there is no limit to the number of holders or total transfer
throughput on a given token.

The EVM’s storage model and typical Solidity contracts like the above or the ForgeBond
example are amenable to being mapped to a UTXO ledger in such a way that frequently
mutated state associated with a single address is stored in separate UTXOs. For a full
explanation of Ethereum’s storage architecture, the reader should refer to the Ethereum
Yellow Paper109. What’s important to understand for this paper is that Ethereum’s storage

109 Ethereum Yellow Paper, https://ethereum.github.io/yellowpaper/paper.pdf ​

70

https://ethereum.github.io/yellowpaper/paper.pdf

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

consists of two nested levels of Merkle Patricia Tries110. The outer tree called the World
State maps 160 bit addresses to Account State. Account states have four fields:

●​ nonce: A counter that is incremented each time the address submits a transaction.
For contract accounts, the nonce is incremented only on the CREATE operation,
meaning only if another contract is created, not if another contract is called111.

●​ balance: The account’s balance of the native currency (e.g. ETH).
●​ storageRoot: A reference to the storage trie of the account. This is empty for

externally owned accounts.
●​ codeHash: A reference to the code deployed to the account. This is empty for

externally owned accounts.

The storage root of an account is the root hash of another Merkle Patricia Trie mapping
256 bit keys to 256 bit values. Each entry is called a slot. The solidity compiler assigns
each storage variable on a contract a slot112. It does so in order, meaning the first variable
goes into slot 1, and it uses packing, meaning data types shorter than 256 bit may share a
slot. For variable length types like arrays, bytes, string, or maps, the variable itself takes
up exactly one slot, but its values are mapped to other slots by hashing their keys and
relying on no collisions in the 256-bit key space of the trie. Importantly here, for a mapping
like balanceOf in slot p, say, the value corresponding to key k would be found in slot
keccak256(h(k) . p), where the dot means concatenation. This extends to nested maps
like allowance at slot q, say. The value of entry allowance[k1] would be at s(k1) =
keccak256(h(k1) . q). The value of allowance[k1][k2] would be at keccak256(h(k2) .
s(k1)).
​
Mapping the Slots to UTXOs gives exactly the contention properties needed for
contention free transfers. A rough schema using Daml syntax is shown below.

template EVMInstance

 with

 uuid : Text

 sigs : [Party]

 obs : [Party]

 where

 signatory sigs

 observer obs

 key (uuid, sigs) : (Text, [Party])

 maintainer key._2

 nonconsuming choice Call : ()

 with

112 Solidity Storage Layout, https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
111 EIP-161 specifying contract account nonce behaviour, https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
110 Merkle Patricia Tries, https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/​

71

https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 callData : EVMCallData
 caller : Party

 controller caller

 do

 events <- callEVM evm callData

 forA_ events (\event -> exercise self Emit with event)

template AccountState

 with

 evm : EVMInstance

 nonce : Int

 -- No Balance as always 0.

 address: Address

 externalParty : Optional Party

 code : Optional EVMCode

 where

 -- Inherit metadata from the evm Instance

 -- Except that parties can self-sign their own

 -- AccountState for externally owned accounts

 signatory (signatory evm) , externalParty

 observer (observer evm)

 key (key evm, address) : (EVMInstance, Address)

 maintainer (maintainer key._1)

template Slot

 with

 accountKey : (EVMInstance, Address)

 slotNumber : Int

 slotValue : Int

 where

 -- Same metadata from the AccountState

 signatory (signatory accountKey._1)

 observer (observer accountKey._1)

 key (accountKey, slotNumber) : ((EVMInstance, Address), Int)

 maintainer (key._1._1)

The callEVM function needs to do more heavy lifting than in the section 5.2 model.
Instead of being instantiated from a given state, running in memory, and then writing state
back, it now needs to fetch, archive, and create state on the fly. All the read operations in
Rust-EVMs RuntimeBaseBackend113 would translate to Daml’s fetchByKey operations.
Write operations like set_storage in Rust-EVMs backend would translate to pairs of
archive and create operations.

113 Rust EVM RuntimeBaseBackend, https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs#L110

72

https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs#L110

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

​ Non-existence checks of contract keys are not supported natively by Canton’s
ledger model whereas non-existence checks of map keys are commonplace. To resolve
this, a low-contention Radix-tree index could be maintained on-ledger for each map in
Ethereum.

The above mapping of the Ethereum account storage trie to Canton contracts resolves the
contention, re-entrancy, and scalability limitations of 5.2. It can also address
confidentiality. The EVM instance operators would need to create read access controls at
the API layer so that Alice can read exactly the state needed for her to submit transfers,
and Alice would need to supply them to her participant node (or Proxy provider) using
Canton’s explicit disclosure feature114. This is workable, but not as nice as using the
on-ledger observer feature. Furthermore, the above is rather expensive on the runtime.
The global state variables, totalSupply, name, symbol, and decimals, each reside in their
own Canton contract, but are likely accessed for many transactions. This is pronounced
even more in the real-world ForgeBond example where there is more global state on the
contract.

Custom annotations to Solidity could let the developer choose which pieces of state are
stored in their own, separate Canton contracts, and dynamically add observers to fully
utilize Canton’s privacy features for EVM state sharing. The @ annotations in the below
are illustrative only. Depending on the implementation approach (Wasm hosted EVM vs
compilation to Wasm) a different type of annotation would work better. For example
implementing a provided interface with pure functions mapping events and key/value pairs
to observers.

contract ERC20 is IERC20 {

 @observers([e.from, e.to])

 event Transfer(address indexed from, address indexed to, uint256 value);

 @observers([e.owner, e.spender])

 event Approval(

 address indexed owner, address indexed spender, uint256 value

);

 uint256 public totalSupply;

 @contractPerEntry

 @keyAsExtraObserver

 mapping(address => uint256) public balanceOf;

 @contractPerEntry

 @keyAsExtraObserver

 mapping(address => mapping(address => uint256)) public allowance;

 string public name;

 string public symbol;

114 Explicit Contract Disclosure, https://docs.daml.com/app-dev/explicit-contract-disclosure.html

73

https://docs.daml.com/app-dev/explicit-contract-disclosure.html

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 uint8 public decimals;

Such a construct for native maps will likely need significant modification to a Solidity
compiler and/or Runtime. The reason is that EVM bytecode has no notion of mappings,
but uses the above rules for mapping map keys to storage slots. And there is no way to
recover the storage key, which is the desired observer, from the storage slot. If this
problem is intractable for native maps, developers may have to adjust their code from
native mappings to custom mapping so that the host can do reverse lookups from slots to
addresses. This could be accomplished, for example, by emitting a specific event rather
than writing to storage directly, which can be intercepted and interpreted by the host.

library CantonMapping {

 struct Map {

 mapping(address => uint256) values;

 }

 event MapStore(uint256 mapSlot, address key, uint256 value);

 event MapDelete(uint256 mapSlot, address key);

 function get(Map storage map, address key) public view returns (uint256) {

 return map.values[key];

 }

 function set(Map storage map, address key, uint256 val) public {

 // Emit an event instead of setting storage directly.

 // The host is responsible for updating storage by creating

 // or cycling the Canton contract for the slot.

 uint256 mapslot;

 assembly {

 mapslot := map.values.slot

 }

 emit MapStore(mapSlot, key, val);

 // Compatibility for other EVM ledgers.

 if(map.values[key] != val) {

 map.values[key] = val;

 }

 }

 function remove(Map storage map, address key) public {

 uint256 mapslot;
 assembly {

 mapslot := map.values.slot

74

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

 }

 emit MapDelete(mapSlot, key);

 delete map.values[key];

 }

}

Any solution to such annotations will be costly to implement in Canton and maybe

impose some work on the developer as in the above. But this cost is justified. If
developers could annotate events and maps with observer information, a Solidity token
could make use of Canton’s full confidentiality capability while maintaining Solidity’s
programming model, and without needing to resort to API-level read permissioning.

6 Conclusion
Blockchain and distributed ledger technology have the potential to fundamentally
transform the plumbing of the financial system, providing lower risk, more real time
experiences and more integrated capabilities up to and including straight-through
processing at the industry level. New value and business models are possible on smart
contract blockchain platforms based on the ability to perform low trust atomic transactions
across independent applications. Canton is a next generation layer 1 protocol providing
the configurable controls, privacy and confidentiality allowing a wide spectrum of use
cases and users, up to and including regulated financial institutions, to participate in the
public permissioned Canton Network and extract the full benefits of the technology.

Daml is Canton’s original smart contract language, designed from the ground up to
safely and concisely program Canton’s ledger model. It will remain a strong choice for
programming Canton applications, but advances in virtual machines, and developments in
the public permissionless blockchain space have opened the door to integrating additional
smart contract programming languages for Canton. This paper presents two additive
efforts to open up Canton to different languages and add value to the blockchain and DLT
space as a whole by doing so.

Integration of a Wasm virtual machine as an alternative to the Daml engine would
allow Canton native smart contracts to be programmed in a general purpose surface
language like Rust or AssemblyScript. This would allow easier developer adoption of
Canton by providing a more familiar experience than the purely functional and strongly
typed Daml language. This work could well open the door to Canton being able to support
an open ecosystem of virtual machines, opening up the Canton smart contract language
ecosystem entirely.

Based on the Wasm virtual machine, or by integrating a separate virtual machine,
it is possible to support Solidity smart contracts on Canton offering high fidelity
EVM-compatibility. This would allow for the lift and shift of existing Solidity-based solutions
to Canton and also open up the Canton Network to the existing Solidity developer
community. But perhaps most importantly, EVM support as presented in this paper would
bring Canton’s configurable controls, privacy, and confidentiality to EVM contracts. This is

75

Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network

a capability no other chain or network can currently offer and presents a major hurdle to
institutions moving beyond private permissioned deployments of EVM chains.

The materials presented in this paper are the first steps towards enabling the
Canton Network ecosystem, Digital Asset included, to develop additional language
support for Canton as open source contributions.

76

	Polyglot Canton
	Abstract
	1 Introduction
	2 Canton
	2.1 Architecture
	2.2 Identity
	2.3 Canton Ledger Model
	2.4 Canton Consensus
	2.5 Smart Contracts in Canton

	3 Daml
	3.1 Surface Language

	3.2 Language Stack
	4 Wasm-based Smart Contracts in Canton
	4.1 Wasm Interpreter in Canton

	4.2 High-level Language support
	5 Solidity and EVM support in Canton
	5.1 Manual EVM Orchestration
	5.2 Coarse Ledger Model Mapping
	5.3 API Wrappers
	5.4 Fine grained mapping with added privacy

	6 Conclusion

