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Abstract 
Canton Network is a public blockchain network with configurable controls and 

privacy. Thanks to a unique stakeholder-based consensus methodology, it can be set up 
to serve anything from public decentralized applications, to addressing the requirements 
demanded by regulators and financial institutions. It can do all this while still maintaining 
blockchain’s key ability to transact atomically and with low trust across the entire public 
network. The consensus protocol builds on an extended UTXO ledger model in which 
transactions have a rich structure that allows their decomposition into overlapping 
sub-transactions that can be distributed and validated independently in a deterministic 
fashion. A rich ledger model such as this puts strong demands on the smart contract 
language that is used both to construct and validate the resulting transactions. The 
solution in Canton to date is the Daml smart contract language, a custom language stack 
derived from Haskell. The Daml language has allowed Canton to be proven out and 
mature, but for a public and open Canton Network, there are good reasons to open it up 
to alternative programming experiences. Firstly, Daml is a purely functional and strongly 
statically typed language designed to provide maximal confidence and safety for mission 
critical institutional use cases. Supporting additional languages following other proven 
paradigms would make Canton accessible to a wider pool of developers requiring less 
upfront education. Secondly, Canton Network aims to apply the best parts of crypto and 
DeFi to traditional finance, and to break down the currently hard barrier between those 
two worlds. Supporting those languages that have become popular in DeFi, Solidity in 
particular, would further that aim, and additionally make those languages compatible with 
the control and privacy requirements demanded in regulated finance. And lastly, and 
maybe most crucially, smart contract and general language ecosystems have evolved 
over recent years to the point where there are compelling and viable alternatives to 
Daml’s current language stack. This paper demonstrates alternative language engines 
like Wasm in Canton, which in turn opens the door to compilation or hosting of Solidity in 
Wasm using proven tools like Solang or Rust-EVM. It presents a path to a future where 
Canton is polyglot, widely accessible, and compatible with EVM chains and DeFi. 
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1 Introduction 
Blockchains and smart contract based applications promise to transform financial 
technology1,2. Today’s financial systems operate in one of two ways. The model most 
prevalent in consumer facing digital native finance is centralization of data and control in 
large financial intermediaries that can offer slick near real time experiences. Services like 
PayPal or Robinhood are examples of such services, including the downsides of the 
added counterparty risks. The second model, prevalent in traditional finance, predates 
even the internet. Every financial institution keeps its own books. Ownership and servicing 
of assets is managed through complex hierarchical account structures across multiple 
organizations. Transactions that operate on multiple organizations’ books have to be 
coordinated through long sequences of messages between these organizations, and 
errors corrected through reconciliation processes. This system is distributed, and for all 
intents and purposes even trustless and decentralized, but consistency across 
organizations is ascertained through human error checking and labor, not through 
properties of the system itself. 

Blockchain, first introduced by Bitcoin3, offers a novel third way.  Ownership 
records are kept on a low trust distributed system, often called a decentralized system in a 
way that combines the benefits of the two existing approaches. The system operates in 
near real time allowing investor experiences similar to those on centralized systems. Yet 
the system is so secure that participants can treat it with the same confidence as a book 
they would keep themselves and thus use it as a shared golden source of truth for the 
state of assets, all without centralization of book keeping or trust in any centralized entity. 
This is so robust and proven that in the United States of America, Bitcoin is considered a 
commodity4. 

In the years immediately following Bitcoin’s introduction, there were a number of 
innovations and imitations all of which shared the key property that blockchain and 
application were one and the same. The Bitcoin application is part of the Bitcoin 
blockchain and the Bitcoin blockchain is not optimized to host any other application. This 
paradigm was shifted by Ethereum5, widely regarded as the first general smart contract 
blockchain. Buterin, the author of the Ethereum paper, has stated that the name “smart 
contract” is a bad choice, proposing instead “persistent script” as a name6. This latter 
name does capture the idea rather well. Smart contracts allow developers to express state 
schemas for persisted data that is synchronized via the blockchain, as well as scripts 
which operate on that data, corresponding to rules and authorizations of those rules which 
govern the data. Persisted data, and procedures on data are the essence of an 
application backend and as such Ethereum was highly successful in enabling blockchain 
applications: third party applications developed with smart contracts as the core 
persistence and business logic. 

6 Twitter (now X) post, Buterin, 2018,  https://x.com/vitalikbuterin/status/1051160932699770882?lang=en   

5 Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform, Buterin, 2014, 
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf  

4 BitCoin basics, CFTC, 2019, https://www.cftc.gov/sites/default/files/2019-12/oceo_bitcoinbasics0218.pdf   
3 Bitcoin: A Peer-to-Peer Electronic Cash System, Sathoshi Nakamoto, 2009, https://bitcoin.org/bitcoin.pdf   
2 Finternet: the financial system for the future, Carstens & Nilekani, 2024, https://www.bis.org/publ/work1178.pdf 
1 III. Blueprint for the future monetary system: improving the old, enabling the new, BIS, 2023, https://www.bis.org/publ/arpdf/ar2023e3.pdf 
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While already of high value for single applications, smart contract chains like 
Ethereum typically unlock further benefits by acting as an application platform for multiple 
applications. Applications hosted on the same blockchain can interact with each other by 
making programmatic calls from one smart contract to another, with the guarantee that 
any  effects across smart contracts are committed in a single atomic transaction. In terms 
of developer experience, this is as simple as calling one C library from another, and 
collating effects in a single database transaction, but thanks to the decentralized nature of 
the system, the shared persistence, and low trust, it opens up entirely new possibilities. 
One developer can launch a payment system. Another developer can launch a tokenized 
bond. And a third can launch an exchange, in which these assets can be swapped, 
instantly, atomically, and without counterparty risks. This is commonly referred to as a 
delivery versus payment transaction, or DvP. All of these applications can be run with 
centralized or decentralized control, giving rise to entirely new and innovative business 
models, commonly referred to as Decentralized Finance (DeFi).  

To illustrate the difference between traditional app integration via APIs versus 
composition on the blockchain, consider travel aggregators. Alice wants to book a 
complex holiday and searches for flights on several airlines, hotels, and car rental through 
an aggregator. The prices are shown and she decides to book. After entering her payment 
details, the aggregator in the background attempts to make independent bookings with the 
multiple airlines, hotels, and car rental companies. It’s possible for some of these to 
succeed, and some of these to fail, leaving Alice with a partial itinerary. She now has to 
plug the gap, potentially leaving her with less favorable terms than an altogether different 
itinerary. Contrast what an experience on a blockchain system could look like. The 
settlement, meaning the exchange of Alice’s money for binding bookings with all the 
different vendors, can happen in a single atomic transaction. If one booking fails, all fail, 
leaving Alice free to pursue a different arrangement.  

 
Blockchain for regulated finance can solve the same two problems that the technology 
demonstrably solves in crypto and DeFi: Synchronization in real time with low trust and 
high integrity, and unparalleled interoperability between applications running on the same 
network. But there are additional challenges for adoption of the technology by regulated 
entities, and these have been understood in some form for as long as smart contract 
blockchains have been around. 
​ Regulated institutions are regulated precisely to enforce some baseline of risk 
management that ensures financial stability. Distributed systems across multiple 
institutions introduce new counterparties, or new ways of interacting with those 
counterparties, and that can significantly change the risk profile of assets managed on 
such systems. The regulators have clarified the treatment of blockchain based assets over 
the last years7, and have identified the specific risks associated with the technology as 
used in crypto and DeFi, commonly called public permissionless8 networks. Taking the 
above example of a payment and tokenized bond being exchanged in a DvP transaction, 
for the assets in question to be considered equivalent to the same assets managed on 

8 Working paper 44 Novel risks, mitigants and uncertainties with permissionless distributed ledger technologies, BIS, 2024,  https://www.bis.org/bcbs/publ/wp44.pdf  
7 SCO60 Scope and Definitions on Cryptoasset Exposures, BIS, 2022, https://www.bis.org/basel_framework/chapter/SCO/60.htm  
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traditional IT systems, they need equivalent risk profiles. Each asset needs to be backed 
by a clearly accountable and licensed registrar9. That registrar needs sufficient control to 
ensure settlement, finality and legal compliance. And the registrar needs to maintain 
privacy and confidentiality, preventing ownership data leaking between applications and 
between investors. 
​ These requirements gave rise to a first generation of enterprise smart contract 
blockchain systems soon after the launch of Ethereum, most notably Quorum10, Besu11, 
Fabric12, and Corda13. First and foremost, these systems solve for the regulatory control 
requirements by running as private permissioned networks, and this has been proven out 
numerous times with regulated production systems running on all of the above systems 
around the world14. However, confidentiality (often referred to as privacy) remains a 
challenge for many such systems15, and due to the lack of interoperability between private 
systems, the network effects visible in DeFi are not materializing in the same way. A 
number of initiatives are attempting to address this issue16 and establish unified ledgers 
that can act as the common venue for multiple regulated assets and services.  
 
Privacy and confidentiality also remain one of the greatest challenges for the Ethereum 
ecosystem17 and public permissioned networks in general. An example where this is 
creating challenges in practice is that collateral movements in and out of crypto 
derivatives exchanges are fully transparent on chain. That means anyone can use this 
information plainly at regular intervals to deduce a trader or market maker's financial 
position, and use that information to their advantage. 
The blockchain community at large is pursuing a number of approaches to add privacy 
and confidentiality to the Ethereum ecosystem. The below lists a few of the prevalent 
ideas with their capabilities and limitations. They all have in common that they try to add 
privacy on top of the Ethereum Virtual Machine (EVM) and as such do not address the 
core architecture of EVM chains, which is a fully replicated, transparent, and 
permissionless consensus. As a consequence, none of them are able to meet general 
purpose privacy and confidentiality on Solidity contracts: 

●​ Anonymization, pseudonymization and similar approaches like the Stealth 
Addresses cited in (An incomplete guide to stealth addresses, Buterin, 2023) 

●​ Privacy Pools18, which use zero knowledge proof cryptography for simple 
tokenization by hiding the connections between deposits and withdrawals from a 
pool of assets. 

●​ Homomorphic encryption19 offers the obfuscation of integer values while still 
operating on them using basic arithmetic operations and comparisons. 

19 fhEVM github repo, https://github.com/zama-ai/fhevm  
18 Blockchain Privacy and Regulatory Compliance: Towards a Practical Equilibrium, Buterin et. al, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4563364  
17 An incomplete guide to stealth addresses, Buterin, 2023, https://vitalik.eth.limo/general/2023/01/20/stealth.html  

16 Global Layer 1 (GL1) Whitepaper, Monetary Authority of Singapore, 2024, 
https://www.mas.gov.sg/publications/monographs-or-information-paper/2024/gl1-whitepaper   

15 Blockchain privacy delays launch of Brazil’s DREX CBDC, enters phase 2, Ledger Insights, 2024, 
https://www.ledgerinsights.com/blockchain-privacy-delays-launch-of-brazils-drex-cbdc-enters-phase-2/   

14 Corda Use Case Directory, R3, https://r3.com/products/use-case-directory-all/   
13 Corda: An introduction, Brown / Carlyle / Grigg/ Hearn, 2016, https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf   
12 Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, Elli Androulaki et al, 2018, https://arxiv.org/abs/1801.10228   

11 Hyperledger Unanimously Approves First Ethereum Codebase For Enterprises, Forbes, 2019, 
https://www.forbes.com/sites/michaeldelcastillo/2019/08/29/hyperledger-unanimously-approves-first-ethereum-codebase-for-enterprises/   

10 JP Morgan’s Quorum blockchain powers new correspondent banking network,  www.bankingtech.com, 2017, 
https://web.archive.org/web/20171109080854/http://www.bankingtech.com/1037032/jp-morgans-quorum-blockchain-powers-new-correspondent-banking-network/   

9 Registrar on Investopedia, https://www.investopedia.com/terms/r/registrar.asp  
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●​ Private chains or rollups, which restrict access to the blockchain to a small 
invite-only group of participants. This provides privacy from the general public, but 
there is no confidentiality within the chain. It’s fully transparent for anyone with 
access. Traditionally, this was the domain of enterprise ethereum clients like 
Quorum and Besu, but Tessera, one of the last remaining private transaction 
managers for Ethereum, was recently sunset20. Private rollups, subnets, and 
sidechains offer the same level of privacy, but slightly better interoperability in that 
they typically have inbuilt non-transactional messaging to other chains in the same 
ecosystem. 

●​ Confidential compute21 can be used to run the blockchain in hardware enclaves  
provided by groups of semi-trusted entities. In this model, data is either public, 
meaning visible to all, or private, visible to nobody at all. 
 

Notably and slightly surprisingly given the privacy rhetoric around zero knowledge proofs, 
the authors of this paper could not find any active projects attempting to add confidentiality 
or privacy to regular Ethereum contracts. 

 
Canton22 is a next generation layer 1 with fine-grained smart-contract configured controls, 
and need-to-know privacy and confidentiality based on data minimization, allowing 
everything from permissionless DeFi to regulated finance, all while maintaining the ability 
to perform atomic smart contract calls between independent applications. It enables 
application composition along the lines of the DeFi example above for regulated entities. 
Two regulated institutions can launch payment and bond tokenization applications 
maintaining full privacy, confidentiality and control. Asset owners can construct and 
execute atomic transactions which move assets on both sides without affecting the privacy 
or confidentiality properties. It allows the organic development of a public network and a 
unified ledger where applications and users can openly join and extend the business 
running on the network like in a public permissionless chain, but where individual 
applications can be controlled in the same vein as on a private permissioned network. 
Picking up on the collateral example above, a transaction pledging an asset to an 
exchange would be precisely to the trader, the exchange, and escrow agent at which the 
asset is pledged, and the institution(s) running the asset’s registry. Returning to the DvP 
example, Canton can execute a DvP with sub-transaction privacy. The buyer and owner 
see the entire swap, but the registrars of payment and delivery assets see only a simple 
transfer of their respective assets, all while still guaranteeing atomic settlement, and 
providing resilience against malicious participants. 
 
Canton’s ledger model (formerly the Daml Ledger Model23) provides both the abstract 
conceptual mental model for smart contract developers on Canton, as well as the 
theoretical foundation for Canton to offer its independent control, privacy, and 
confidentiality properties. Like many other privacy-first blockchain platforms (see section 
2.3), Canton uses an extended unspent transaction output model (eUTXO). The UTXO 

23  Daml documentation on the Daml Ledger Model, https://docs.daml.com/concepts/ledger-model/index.html 
22 Canton: A Daml based ledger interoperability protocol, Digital Asset, 2020, https://www.canton.io/publications/canton-whitepaper.pdf   
21 Oasis Sapphire network, https://oasisprotocol.org/sapphire  
20 Sunsetting Tessera and Simplifying Besu, Linux Foundation, 2024, https://www.lfdecentralizedtrust.org/blog/sunsetting-tessera-and-simplifying-hyperledger-besu  
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model goes back all the way to Bitcoin and is based on the idea that the ledger state is 
simply the set of immutable outputs from committed transactions that have not yet been 
spent by later transactions. Canton extends this model by enriching transactions with a 
hierarchical structure of actions, which can be thought of as the call graph of smart 
contract functions, including special functions for the creation and spending of outputs. As 
part of the consensus protocol, this call graph is decomposed into stakeholder specific 
views, which are distributed on a need to know basis using standard cryptography and 
data minimization, and validated using a fine grained stakeholder based Proof of Authority 
per view. This decomposition of transactions translates into a decomposition of ledger 
state so that each participant holds only their subset of all UTXOs on a need to know 
basis, thus providing privacy and confidentiality. 
​ Abstract ledger models are common to many smart contract ledgers, and the EVM 
ledger model provides a good point of comparison. In the EVM ledger model, the state 
consists of Accounts (identified by addresses), which can be either externally owned via a 
cryptographic key, or hold smart contract code and mutable state controlled by that code. 
All accounts are visible to all participants in a fully transparent fashion, which gives each 
smart contract account, and indeed the full EVM, the properties of a fully replicated state 
machine. A transaction is a top level function call into a smart contract account, which 
every participant can execute consistently due to their knowledge of the entire global 
state, moving the EVM state machine from one state to the next. 
​ The addition of the primitives for a ledger model is what turns a surface language 
into a smart contract language. For example, Solidity extends an ECMAScript expression 
language with primitives for EVM smart contract account. The Solana Program Crate24 
adds Solana ledger model primitives to Rust to turn Rust into a smart contract language. 
The more cleanly the ledger model is separated from the language interpreter, the easier 
it is to support additional languages and virtual machines. As Section 4 will demonstrate, 
the Canton ledger model is well enough abstracted out to allow for additional languages 
and virtual machines. The EVM ledger model, by contrast, is relatively tightly intertwined 
with the EVM interpreter, which is why efforts for additional languages on EVM ledgers are 
typically approached by compiling to EVM (e.g. Vyper25), not by running additional VMs 
side-by-side with the EVM.  
​
The Daml smart contract language26 was developed in parallel with Canton from the 
outset to expose the primitives of Canton’s ledger model. It is purpose made to abstract 
away the complexities of the protocol and allow developers to concisely express the 
shared data, rules, and permissions of multiparty workflows, including financial 
applications. Daml has been proven in some of the highest volume Distributed Ledger 
Technology (DLT) applications in the world27. Daml is, and will remain, a robust choice for 
programming enterprise grade smart contract applications on Canton. 

Daml’s tech stack and design choices were driven by a combination of factors, 
including a desire to provide a high degree of developer safety, requirements on runtime 
safety and determinism, and the available language and compiler tools at the time. Some 

27 DLR Transacts $1 Trillion a Month, Broadridge, 2023, https://www.broadridge.com/article/capital-markets/dlr-transacts-1-trillion-a-month   
26 Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows, Bernauer et al, 2019, https://arxiv.org/abs/2303.03749   
25 Vyper documentation, https://docs.vyperlang.org/en/stable/  
24 Solana Program Crate, https://crates.io/crates/solana-program  
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of these design drivers, like runtime safety and determinism, hold up. Others, like strong 
static typing and a purely functional expression language are a matter of taste and can 
present a hurdle to developers not familiar with those language paradigms28,29. And for 
some, new alternatives are available, in that robust, safe, and deterministic runtime 
environments like WebAssembly (Wasm) engines have been developed and proven out in 
the meantime. If Canton were developed today, it would likely take advantage of Wasm 
from the outset, and trade off some safety for accessibility in its surface language. 
 
Opening up Canton to additional smart contract languages is feasible thanks to the clean 
abstract ledger model, and these advancements in the language space. Additional 
development experiences will ease access to Canton for new, larger pools of developers, 
and make Canton’s privacy and control properties available to those developers. 
​ The availability of near-deterministic byte codes and virtual machines like Wasm, 
as well as low-level or purpose-made languages like Rust and AssemblyScript that do not 
rely on any particular Wasm host functions, provide a solid language and runtime 
foundation. This enables programming models for Canton akin to the Solana Program 
Crate referenced above, exposing ledger model primitives through libraries in standard 
languages like Rust. Rust's ecosystem of developer tools, its familiar curly brace syntax, 
and imperative style is likely more accessible and attractive to developers without a 
background in pure familiar programming. 

Developer accessibility is also important for the existing community of smart 
contract developers. The success of DeFi on Ethereum has resulted in its smart contract 
language, Solidity, becoming quite dominant. Solidity is as intertwined with Ethereum’s 
ledger model as Daml is with Canton’s. As such, it doesn’t make sense to consider 
Solidity as the primary programming language for Canton. However, supporting Solidity as 
one option on Canton would have a number of major benefits. Solidity developers could 
adopt Canton with direct skills transfer, transitioning to native smart contracts only as the 
need arises. Applications already built for Ethereum, private permissioned deployments, in 
particular, could be lifted and shifted across to Canton Network and benefit from network 
effects that are possible there. And Canton could give Solidity contracts the properties that 
they lack for regulated use on other public networks: controls, privacy, and confidentiality 
while maintaining atomic smart contract calls. 

The gravity of the privacy problem for Ethereum Virtual Machine (EVM) ledgers, 
and the partiality of all of the above approaches presents a great opportunity for the 
Canton Network. Canton supports fine grained sub-transaction privacy with smart contract 
interoperability at the ledger model and protocol level. EVM compatibility for Canton could 
give rise to a new type of privacy solution for EVM, in which different contracts or even 
pieces of contract state are accessible to different stakeholder groups, while maintaining 
atomic smart contract calls.  

Since Daml, Wasm-native languages, and existing smart contract languages like 
Solidity offer varied benefits and styles attractive to different stakeholder groups, a truly 
open Canton requires multiple and additional languages. Daml needs to be decoupled 

29 Empirical Analysis of Programming Language Adoption, Meyerovich and Rabkin, 2013, https://lmeyerov.github.io/projects/socioplt/papers/oopsla2013.pdf  
28 Learning Daml: Advantages and Challenges, Behnke, 2023, https://www.halborn.com/blog/post/learning-daml-advantages-and-challenges   
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from Canton even further to turn Canton into a truly polyglot ecosystem where different 
developers can choose their smart contract language to suit their needs, skills, and use 
cases. 

 
This paper is laid out in four sections diving deeply into the status quo, ongoing work, and 
future opportunities regarding the languages supported by Canton. 
​ Section 2 will recap those parts of the Canton protocol required to understand 
smart contract language design and considerations. Section 2.1 presents the high level 
architecture of Canton, in particular its two-tier network design consisting of participant 
nodes and synchronizers. These correspond roughly to a separation of validation and 
ordering, or to full nodes and low level networking and byzantine fault tolerance (BFT) 
networking in other networks. Section 2.2 covers identity and cryptography as needed to 
understand the abstract identity concept of Parties introduced in the Canton ledger model 
in section 2.3. The latter is an abstract extended unspent transaction output (eUTXO) 
model, which not only extends what data and script a UTXO can hold, but also endows 
transactions with significantly more structure than usual eUTXO models, tracking smart 
contract calls in a tree of actions. This structure is used in Canton’s transaction protocol, 
covered in section 2.4, to decompose transactions into views that can be distributed and 
validated independently of each other. This decomposition allows independent 
applications to exert control while maintaining confidentiality through sub-transaction 
privacy. Section 2.5 concludes the discussion on Canton by covering how smart contracts 
fit into the consensus and connect it with the abstract ledger model. Smart contract 
packages are introduced as the deployable unit of smart contract code, and key 
constraints and requirements on the language stack are covered in preparation for the 
rest of the paper.   

Section 3  presents the Daml smart contract language. Section 3.1 shows an 
example of a typical Daml package, how it maps to the ledger model, and how a smart 
contract call translates into a transaction. The simple example chosen acts as a baseline 
for comparison with future languages, as well as to provide some familiarity to readers to 
read Daml code snippets in later chapters. Section 3.2 introduces the Daml language 
stack at a level needed to consider additional languages being supported by presenting 
the key components and interfaces with Canton that need to be modified, extended, or 
opened up to support additional languages, most notably Daml’s intermediary language 
Daml-LF, its interpreter, and how it interacts with Canton. 

Sections 4 and 5 present two parallel but interrelated bodies of work to open up 
Canton to additional languages. Section 4 discusses how Canton’s intermediary language 
and Canton’s interaction with smart contract engines (commonly called Virtual Machines, 
or VMs) could be modified to support additional VMs. Specifically, section 4.1 presents 
work on Canton smart contracts written in Rust, and compiled to and executed in a Wasm 
runtime. Section 4.2 presents how this capability could be used to support an accessible 
high level language experience in Rust, or other Wasm-native languages like 
AssemblyScript to develop Canton smart contracts, using standard IDE and compiler 
tooling. The construction of 4.1 and 4.2 is such that it generalizes to many runtimes and 
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languages and thus presents a path towards Canton supporting numerous VMs and 
language stacks, possibly even in a pluggable fashion. 

Section 5 covers Solidity specifically. Solidity is about as intertwined with Ethereum 
and the Ethereum Virtual Machine (EVM) as Daml is with Canton. Unlike support of a 
language like Rust or AssemblyScript, supporting Solidity isn’t just about language 
support, but about ledger model and API support. Section 5.1 uses an example of porting 
SocGen’s ForgeBond contract30 on Ethereum to Canton and discusses how pure EVM 
support may be feasible based on section 4’s Wasm work, by either cross-compiling 
Solidity to Wasm using the open source Hyperledger Solang31 compiler, or by hosting a 
Wasm-based EVM like Rust-EVM32. Section 5.2 goes on to discuss how the EVM ledger 
model could be mapped to the Canton ledger model to go from surface language support 
to smart contract support. The section discusses challenges like contention, as well as 
advantages over standard EVM, like the ability to run atomic transactions between two 
private Solidity contracts. Section 5.3 discusses API compatibility to achieve functional lift 
and shift of Solidity applications to Canton. Finally, section 5.4 envisions how minor 
language extensions to Solidity could be used to inform a compiler or EVM how to map 
Solidity contracts to Canton’s ledger model in more sophisticated ways, which may allow 
not only scalability close to Canton-native smart contracts, but for Solidity contracts to 
benefit from Canton’s full sub-transaction privacy. 

2 Canton 
Canton is a blockchain or Distributed Ledger Technology (DLT) system which gives 
multiple parties consistent views into a virtual global ledger. The global ledger is not 
materialized in any one place, but kept consistent through stakeholder based consensus 
between the participants according to rules laid out in smart contracts. Participants’ views 
are materialized locally on their own nodes, and used as a permanent record of data. The 
below image shows participants Alice, Bob, and Charlie at a conceptual level connecting 
to a virtual global ledger and holding different views of that ledger. 
 

32 Rust Evm GitHub repo: https://github.com/rust-ethereum/evm  
31 Hyperledger Solang, GitHub repo: https://github.com/hyperledger/solang, Docs: https://solang.readthedocs.io/   
30 ForgeBond source code via Blockscan, https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb  
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This section offers a recap of Canton’s architecture, cryptography and identity, ledger 
model, and consensus protocol as a foundation for the later discussions on smart 
contracts within Canton. Covering Canton’s design and function to the level required to 
understand all the nuances involved in integrating smart contract languages goes beyond 
the scope of this paper. Readers that would like to dig deeper should refer to previous 
works33,34 and documentation35. 

2.1 Architecture  
Nodes in the Canton Network are called participant nodes. A user or company deploys 
one or more participant nodes. The user's participant node stores the user's private 
transaction and state data, submits transactions to the network for the user, and 
participates in consensus on transactions in which the user is entitled or required to take 
part. In short, the participant node represents an independent participant at the protocol 
level. What most would consider “the ledger”, the graph of transactions, resulting state, 
and cryptographic evidence, is all stored and processed amongst the participants. In both 
of these respects, a Canton participant is akin to a full node in traditional blockchains like 
Bitcoin or Ethereum. What sets Canton apart from most other blockchains is that both 
data and consensus are segmented, not fully replicated. Each node only holds its view of 
the ledger, so that no node holds the entire ledger. And consensus is run on a transaction 
by transaction basis, involving exactly the stakeholder participants in each transaction in a 
per-transaction Proof-of-Authority model. 

To transport data between nodes and determine the order of messages, each 
participant node connects to one or more private or public synchronizers (previously 

35 Daml documentation, Digital Asset, https://docs.daml.com/   

34  Canton Network: A Network of Networks for Smart Contract Applications, Digital Asset, 2024, 
https://www.digitalasset.com/hubfs/Canton/Canton%20Network%20-%20White%20Paper.pdf   

33  Canton: A Daml based ledger interoperability protocol, Digital Asset, 2020, https://www.canton.io/publications/canton-whitepaper.pdf   
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synchronization domains, or sync domains). Any group of users can coordinate an atomic 
transaction amongst the group as long as their participant nodes are connected to a 
common synchronizer. Anyone can deploy synchronizers at will. To promote privacy and 
net neutrality, data in transit over sync domains is encrypted so that it can be decrypted in 
a strict need-to-know fashion, preventing operators or uninvolved participants from 
accessing message contents. Synchronizers can be thought of as highly available, 
fault-tolerant messaging queues between participant nodes that sequence, timestamp, 
and distribute encrypted messages to participant nodes with high transparency and 
ordering guarantees. 

Transactions coordinated on one synchronizer can use the outputs from 
transactions coordinated on another synchronizer as inputs as long as the stakeholder 
participants in those outputs are connected to both synchronizers. This allows the 
transaction graph to fluidly span across synchronizers. This gives Canton a network of 
networks topology at the network level, while exposing a view into a single global ledger of 
transactions through the participants at the data level. Application providers and users can 
freely choose which synchronizers they use to coordinate which transactions. As such, 
Canton creates a mesh network of composable Daml applications in which each 
application may make different 
tradeoffs between trust, 
performance, access control, and 
operational complexity. 

The resulting network is 
public by providing open, 
internet-like extensibility of this 
mesh of participants, synchronizers 
and applications as well as through 
the existence of open 
synchronizers and applications. 
But it is also permissioned as each 
participant, application, and 
synchronizer has a lot of 
independent control over which 
parts of the network they allow to 
interact with them and how, 
allowing a range of configurations 
from private centralized subnetworks and services with strong controls to public and 
decentralized network infrastructure and DeFi applications. 

Illustrated here is a constellation consisting of three private synchronizers and 
apps operated by participant nodes “OP” for “Operator”, each providing a prerequisite 
piece for the DvP transaction discussed in the introduction. A cash registry provides 
payment functionality, a fund tokenization app an asset to be purchased, and a trading 
app a marketplace where a Buyer and a Seller meet and agree a trade. The public Global 
Synchronizer common to all three operators and the two trading participants allows the 
DvP transaction to be coordinated amongst those five nodes. 
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2.2 Identity 
Akin to blockchain systems, user generated cryptographic public key fingerprints form the 
foundational layer of Canton’s identity system. Unlike most other blockchains, however, 
Canton adds a layer of abstraction to identity in order to make it easier to manage keys (to 
rotate or revoke them, for example), to reuse keys (one key for many wallets), or to set up 
complex policies (multi-sig, or read-only access to wallets). This abstraction layer is 
known as the topology ledger and next to managing participant node and synchronizer 
identities and keys, the topology ledger also manages Canton’s abstract on-ledger identity 
called a party. In most situations, the best mental model is to simply identify keys, 
participant nodes, and parties one to one and think of that triple as a wallet or address. 
But to give a faithful account of Canton’s ledger model and consensus in sections 2.3 and 
2.4, understanding the technical distinction between parties and participants and their 
relation to keys is of value. That’s what this section covers. An in depth treatment of 
Canton’s identity management is available in the documentation36. 
 
Namespaces form the roots of trust in Canton’s topology ledger. A namespace is 
identified by the fingerprint of the public key of a private/public key pair called a 
namespace root key. By default, participant nodes are in one to one correspondence with 
namespaces and generate their namespace root key during initialization. Canton also has 
the ability to bootstrap multisig namespaces where there is no single controlling key, but 
that’s beyond this paper. 
​ Note in particular that like in other public networks, this setup ensures that there is 
no single trusted root of trust, but each entity represents themselves by generating their 
own identity and own root of trust. Participants must verify each others’ identities. 
 
Identities are tuples name::namespace and thus rigidly linked to a namespace. By 
default, a participant node will generate its own identity in the namespace controlled by it 
during initialization, using a participant-generated name in the name segment. 
 
Topology changes like creating a new identity are made through topology transactions 
signed by the namespace root key and distributed through synchronizers. Topology 
transactions follow a simple ledger model akin to certificate chains, and the resulting 
ledger of topology transactions is the topology ledger. By default, a participant node will 
broadcast the topology changes and state for their namespace to all synchronizers that 
they are connected to. A good mental model for this paper is that all topology transactions 
are globally known and consistent on all synchronizers. It is possible to maintain different 
topology states facing different synchronizers, and it is possible to delegate signing of 
topology transactions to namespace intermediate keys, but this has no impact on the rest 
of this paper so will not be discussed further. 
 

36 Canton Identity Architecture Documentation, https://docs.daml.com/canton/architecture/identity.html   
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Participants from a ledger viewpoint are identities with several associated key pairs, two 
of which are important for understanding the protocol. The first key pair is the signing key, 
which the participant uses to authenticate and sign any messages as part of the 
consensus protocol. The second is the encryption key used to encrypt messages sent 
from one node to another through the synchronizer. The public keys for both pairs are 
publicly known as part of the topology state. 
 
Parties are abstract identities best thought of as equivalent to “wallets” or “addresses”  in 
other blockchains. This is the notion of identity used in the Canton ledger model and smart 
contracts. They are mapped to participants in a hosting relationship, which is established 
through topology transactions. By default, a party created by a participant is in the same 
namespace as the participant, and automatically mapped to the participant in submission 
mode, meaning the participant can authorize transactions for that party. In this case, the 
signing key of the participant is equivalent to the private key of a Bitcoin address. It is also 
possible to host parties in observation mode, meaning read-only, or confirmation mode 
meaning participation in consensus on behalf of that party, but no authority to submit 
transactions. Parties can also be hosted on multiple nodes at the same time, with N-of-M 
schemes for consensus. This flexibility of modes enables simple topologies similar to 
Bitcoin and Ethereum or more complex ones often required by enterprise best practices 
and security requirements. 

2.3 Canton Ledger Model 
The Daml documentation37 covers the Daml ledger model in depth. As the core subject of 
this paper is programming Canton using languages other than Daml, it will be referred to 
as the Canton ledger model here, and introduced to the needed level of detail. 
 
Extended unspent transaction output (eUTXO) ledger models form the core of many 
blockchain systems and applications that have privacy and confidentiality at their core. To 
name just a few: Corda38, ZCash39, Aztec40, Aleo41, Zeto42. Canton is no exception. This 
pattern has good reasons that would go beyond the scope of this paper to discuss in 
depth. But in short, the UTXO ledger model, as opposed to Ethereum’s account based 
ledger model, breaks up the ledger state into small immutable pieces - UTXOs. This 
makes it easier to break up ledger state and distribute it on a need to know basis, allowing 
for confidentiality. It also makes it easier to do collision detection, enabling double spend 
protection while only partially knowing the ledger state. 
 
Ledger state in a eUTXO ledger is a set of UTXOs, which are immutable pieces of data. 
UTXOs are created as the output of a transaction, used as input to other transactions 
while they are active, and are eventually archived or spent by some transaction. One of 

42 Zeto readme, https://github.com/hyperledger-labs/zeto   
41 Aleo documentation, https://developer.aleo.org/concepts/public_private/#aleo-state-storage 
40 An introduction to Aztec, Blog, Andrews, 2019, https://aztec.network/blog/an-introduction-to-aztec   
39 ZCash Protocol Specification, Bowe/Hornby/Wilcox, 2018-2024, https://zips.z.cash/protocol/protocol.pdf   
38 Corda: An introduction, Brown / Carlyle / Grigg/ Hearn, 2016, https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf   
37 Daml documentation on the Daml Ledger Model, https://docs.daml.com/concepts/ledger-model/index.html   
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the distinguishing features of eUTXO as opposed to Bitcoin’s UTXO is that eUTXOs are 
typed and can hold arbitrary data according to their type. 
 
An eUTXO transaction consists first and foremost of a possibly empty set of UTXOs as 
inputs. It consumes some of these inputs and creates new outputs, which start in an 
unspent state. 
 
Transaction validity is where eUTXO ledgers differ the most from each other as well as 
from plain UTXO. Validity is a pretty broad concept and can span everything from a 
transaction having the right cryptographic signatures to satisfying some transaction 
constraint like the sum of input Bitcoin being equal to the sum of output Bitcoin plus some 
transaction fees. All UTXO ledgers have some way to define what transactions are valid 
by attaching code to UTXOs. In Bitcoin, this is done by attaching a script43 to each UTXO, 
which acts as a predicate for any transaction that tries to use the UTXO as input and 
evaluates whether the use is valid. If the attached code is rich enough this code is called 
smart contracts, and it can thus be said that even Bitcoin supports smart contracts44, it is 
just not geared towards it. This model of attaching code to UTXOs is shared by many 
eUTXO models, for example Corda45, but it is not the only way as section 2.5 will discuss. 
 
An eUTXO ledger is a labeled directed acyclic graph (DAG) of eUTXO transactions 
where the transactions are nodes, and the edges are from transactions that output a 
UTXO to transactions that use the UTXO as input. The edges are labeled with UTXO 
identifiers, and whether they are used in a consuming or non-consuming fashion (called 
Reference States in Corda46, and Reference Inputs in Cardano47, and Data inputs in 
Ergo48). Each UTXO can appear on at most one consuming edge, a key property 
equivalent to not allowing double spends. In Canton, this graph is called the causality 
graph. 
 
Canton’s eUTXO model, 
illustrated here, at the 
surface looks exactly the 
same, with spent/unspent 
UTXOs being called 
active/archived contracts. 
Contracts are typed by 
being linked to contract 
templates, or templates for 
short, which determine both 
their data type and the 
shape of transactions that 
use the contract. We will get back to templates in Section 2.5.  

48 Data Inputs, Ergo Documentation, https://docs.ergoplatform.com/dev/protocol/tx/read-only-inputs/  
47 CIP-31 Reference Inputs, Cardano CIPs, https://cips.cardano.org/cip/CIP-31  
46 Reference States, Corda Documentation, https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/transactions.html#reference-states  
45 Smart Contracts in the Corda documentation, https://docs.r3.com/en/platform/corda/5.2/developing-applications/ledger/smart-contracts.html   
44 Contracts on the Bitcoin wiki,  https://en.bitcoin.it/wiki/Contract 
43 Script on the Bitcoin wiki, https://en.bitcoin.it/wiki/Script  
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Contract Ids are Canton’s addressing scheme for transaction outputs. To express the 
graph pictured above, both transactions and transaction outputs need globally unique 
identifiers called contract Ids and Transaction Ids, respectively. This paper won’t discuss 
how they are computed in Canton. Since Canton’s ledger truly is a DAG, not a linear 
order, and has privacy requirements, it’s not as simple as in Bitcoin, where UTXOs are 
addressed through transaction id and index. But an important property of contract Ids is 
that they are authenticated, meaning that the contract Id cryptographically commits to the 
data on the contract. 
 
A hierarchical transaction structure enriches Canton’s ledger model beyond typical 
eUTXO models. A transaction is a list of actions, which come in different types covered 
below. Some actions, specifically exercise actions, can have consequences, which are 
themselves a list of actions or correspondingly a transaction. This endows transactions 
with a tree, or more precisely a forest structure where nodes are actions and edges are 
via consequence relationships. A sub-transaction of a transaction is obtained by taking a 
set of actions from the forest, together with all their (transitive) consequences. As will 
become clear later, a good way of thinking about actions is as calls to procedures, the tree 
structure as a call graph, and a sub-transaction as a set of calls within that graph plus the 
call graph generated by them. 
 
Actions come in several types, not all of which are covered here. The omitted actions 
concern transaction rollbacks, contract keys, or are subtle variants of exercises none of 
which add to the discussion in this paper. The important two actions to consider are: 
​ Create actions which, as the name suggests, create new contracts. In eUTXO 
terms, they correspond to transaction outputs. They create new UTXOs. Create actions 
can hold arbitrary data, and additionally specify a non-empty set of parties called the 
signatories. The latter signifies that these parties have agreed to the contract and as such 
have some sort of obligation. Analogous to how it’s best to think of smart contracts as 
persistent scripts, it’s best to think of the signatories as the parties that have authorized 
the creation of some state and that jointly maintain it.  
​ Exercise actions are named to convey the idea of a set of parties exercising a right 
on a contract. Those parties are specified by an exercise action and are called the actors. 
In persistent script terms, it’s best to think of exercise actions as calls to a script or 
procedure on a contract. Such calls are always on an active contract, called the input 
contract, and this has the same meaning as in eUTXO. Also just like in eUTXO, the 
exercise action has a kind, which is consuming or nonconsuming, which determines 
whether the input contract is spent. Exercise actions have consequences, which are 
further actions. 
​ Every exercise action has an input contract and every create action an output 
contract. The actions are said to be on the respective contract. 
 
Ledger commits are transactions requested or submitted by one or more parties, the 
requester(s), as defined in 2.2 Identity.  
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A Canton ledger is a list of ledger commits, similar to how the Bitcoin ledger is the list of 
all blocks or equivalently all committed Bitcoin transactions. The following EBNF-like 
grammar summarizes the structure as treated in this paper: 
 
Action       ::= 'Create' party+ contract 
               | 'Exercise' party+ contract exercise Kind Transaction 
Transaction  ::= Action* 
Kind         ::= 'Consuming' | 'NonConsuming' 
Commit       ::= party+ Transaction 
Ledger       ::= Commit* 
 
This image illustrates a simple Canton ledger with four commits, leading up to an atomic 
DvP.  
 

1.​ Bank  issues some cash to Alice 
2.​ CSD issues an asset to Deborah 
3.​ Alice creates a proposal for the DvP 
4.​ Deborah accepts and settles 

 

 
Solid arrows represent inputs, as in the above UTXO illustration. Dash-dot arrows 
represent consequences. 
 
Canton’s validity model is subdivided into three sub-properties: Consistency, 
Conformance, and Authorization. Put simply, consistency says that there are no double 
spends, conformance says that all transactions adhere to the rules encoded in smart 
contracts, and authorization means that all parties that need to authorize an action have 
authorized it directly or indirectly.  
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Conformance and authorization impose important restrictions on the shape of 
transactions, which are relevant to language design, as a language ought to facilitate the 
creation of valid transactions. They are therefore defined more precisely below. 
 
Conformance restricts which actions are allowed in the ledger. The set of all allowed 
actions is called the contract model. For example, a contract model suitable for the above 
example may specify that all create actions have a payload that is either an Iou signed by 
both specified parties, a PaintOffer, or a PaintAgree each with some given argument 
types. And it may specify that the only allowed exercise on an Iou is a consuming 
“transfer” specifying a new owner, with the current and new owners as actors, and with the 
creation of a new Iou owned by the new owner as its only consequence. An important 
property of any conformance model is that it is closed under sub-transactions, meaning if 
a contract model allows a transaction T, then it also allows any subtransaction S of T. 
 
Authorization restricts who may request which actions, and puts further constraints on 
the contract model. The required authorizers of an action are the signatories for a create 
action, and the actors for an exercise action. The authorizers of an exercise action are the 
signatories of the input contract plus the actors. The authorization rule says that: 
​ For top level actions in a ledger commit, the required authorizers are a subset of 
the requesters. 
​ The authorizers of a parent action need to include all required authorizers of a 
child action, meaning a direct consequence. 
 
Privacy and confidentiality are achieved by specifying the projection of the ledger that a 
party gets to see. Each action has a specified set of informees. The informees are the 
union of the action authorizers and an extra set of parties called the observers, which the 
Daml language section 3.1 will discuss further. A party’s projection of a transaction is the 
minimal subtransaction containing the actions on which that party is an informee. A party’s 
projection of the ledger is the set of commits for which the party’s projection is non-empty. 
A party is said to witness an action if it is in their projection. The difference between 
informee and witness can be explained as follows: A party may witness only the creation 
of a contract between other parties, but that doesn't mean that the party will be informed 
about further actions on that contract. An informee is guaranteed to see any consuming 
exercise on a contract for which they are the informee. 
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This image shows the informees in the final “swap” transaction of the above DvP example, 
under the assumption that the owners of Cash and Asset type contracts are observers. 
Note that this is a simplification from more realistic setups where the owner is likely a 
signatory. Since both observers and signatories are informees of a contract, this makes no 
difference for privacy considerations. 
 
The below image shows the same transaction once more, highlighting the different views 
for the four involved parties. Witnesses are only ever added when going down the tree, so 
the view tree is a simpler tree than the tree of actions. It will be discussed further in the 
next section on Canton’s consensus. 
 

 
 
The definitions guarantee that an informee of a create action are also an informee on any 
consuming exercise action on the resulting contract. The projection of the ledger can 
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therefore sensibly be applied to the state consisting of active contracts as well. A party’s 
ledger state is the set of active contracts for which they were an informee of the create 
action. Participant nodes store and index their projection of the ledger and ledger state. 
 
The Local Ledger49 of a party is its projection of the global Canton ledger. Typically no 
party is privy to the whole global ledger. The rules and definitions of the Canton ledger 
model ensure that the party projections of a valid Canton ledger are also valid Canton 
ledgers, and that consistent, valid local ledgers can be merged into a valid global Canton 
ledger. 

2.4 Canton Consensus 
Canton’s consensus follows a typical UTXO pattern, with extensions associated with the 
two tier architecture (2.1), the identity abstractions (2.2), and transaction structure, 
authorization and privacy (2.3). 
 
Commands are submitted by users to a node, corresponding to requesting a commit in 
the ledger model.  As such, the user submits the authorizing parties and the root actions 
of the commit. The node must either host the authorizing parties in submission mode, or 
the user must appropriately sign the transaction later in the process. In the case of 
exercise actions, they specify the input contract Id only, and not the input contract as a 
whole, or the consequences of the action. If the interpretation step requires contracts that 
the node does not have in its local storage, the user may also supplement the commands 
with additional contract information via a functionality called explicit disclosure50. 
 
Interpretation is the transformation of the commands to a conformant and well authorized 
ledger commit in the sense of the ledger model. To do so, it draws on the parties’ ledger 
state available to the participant, as well as any additional user-supplied contracts. 
Interpretation can fail, but does so deterministically. If it does succeed, the resulting 
commit is the unique conformant transaction that could be interpreted from those 
commands. This is a slight oversimplification as in practice the user may omit some type 
information that the participant then fills in using heuristics, but for the purpose of this 
paper, this assumption on the contract model is valid and further restricts the nature of 
allowable contract models: If two conformant exercise actions match in all but their 
consequences, then their consequences also match. The output of interpretation is a 
Daml-LF transaction, discussed further in section 3.2. 
 
Blinding is the process by which the submitting node decomposes the commit into its 
views and encrypts them. Witness parties are mapped to witness participants using 
hosting relationships in the topology state. The tree of actions is  then transformed into a 
tree of views such that the witness participants on all actions within a view are the same 
and the tree structure is compatible, meaning the actions in a sub-view are (transitive) 
consequences of the actions in the parent view. The views are encrypted using participant 

50  Explicit Contract Disclosure, https://docs.daml.com/app-dev/explicit-contract-disclosure.html  
49 Local Ledgers, Daml Documentation, https://docs.daml.com/concepts/local-ledger.html#local-ledgers  
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encryption keys such that exactly the participants that host the witness parties of a view 
can decrypt them. The participant knows all the public keys and hosting relationships 
thanks to the shared topology state discussed in 2.2. 
​ A parallel confirmation tree is generated that specifies which views need to be 
confirmed by which participants. In effect, this specifies which participant quorum is 
needed on behalf of each party that authorizes an action within the view. This is used in 
the stakeholder-based proof of authority algorithm described further below. 
​ In the simple case where parties are fully hosted by single participants, the 
confirmation policy is that every participant hosting an authorizer of an action within the 
view needs to confirm the view. 
​ The views, including their matching confirmation subtrees are assembled into a big 
multicast message called a confirmation request. This message also addresses the 
confirmation tree as a whole to a subcomponent of the synchronizer called the mediator. 
The confirmation request (or more precisely the transaction id, which is a root hash of the 
view tree) is signed by the participant or user depending on whether the requesting parties 
are hosted in submission mode, or not. 
 
Sequencing involves the submitting participant sending the whole confirmation request to 
the synchronizer, or specifically a subcomponent called the sequencer. The sequencer 
records the confirmation request in a single total ordering with all other messages it 
processes, and then makes the individual views available to the addressees in that 
ordering. The sequencer acts as a multicast messaging queue with guaranteed consistent 
ordering and delivery. It doesn’t know anything about the payload of the message. From 
the sequencer’s perspective, every sequencing request is a batch of multiple envelopes 
with CC and BCC addresses containing encrypted messages. 
 
Validation is done by the participant nodes that receive their views of the confirmation 
request. Since they all get the confirmation request in consistent order, they all have 
consistent ledger state projections and can thus validate their projections consistently and 
deterministically. A contract is either active to all its signatories or to none, for example. 
Consistency checking therefore boils down to each participant checking that all input 
contracts for which they host a signatory party, are active as specified. 

Thanks to the contract model being closed under subtransactions, and having 
unique conformant transactions for each action, conformance and authorization checking 
can be done by taking the root nodes of the view, and reinterpreting and reblinding them. 
The node goes through the interpretation and blinding steps again and checks that it gets 
the same views. For this, the node doesn’t rely on its stored contracts, but the inputs 
specified on the actions themselves. This ensures that witnesses can fully perform 
conformance and authorization checks for their views, and is safe since contract Ids 
commit to their data, and have already been checked for activeness. 

In a non-faulty, non-malicious setting the only failures are write contention (two 
conflicting transactions attempting to spend the same UTXOs, or with topology changes), 
as well as timeouts. This is a desirable property for a DLT system since failing 
transactions are costly. 
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Confirmation is the core of the stakeholder based proof of authority algorithm. 
Nodes specified in the confirmation tree send their verdict on their view to the mediator via 
the sequencer. Verdicts are either approvals or rejections. 
 
Mediation involves the mediator aggregating all the confirmations, and evaluating them 
according to the confirmation tree. Once enough confirmations have been received to 
correspond to positive verdicts from every authorizing party, the mediator addresses a 
mediator confirmation in a single multicast message through the sequencer to all involved 
participants. This has similar privacy properties to the sequencing of the confirmation 
request above. 
 
Commit of the ledger happens with the recordation of the mediator confirmation on the 
sequencer. In logical sequencer time, this is at the same point in time for all participant 
nodes involved. They apply the transaction and state changes to their local data stores as 
they process this message. 

 

 
As an end result, we have an atomic commit with low trust and high confidentiality. The 
synchronizer learns the shape of the transaction via the confirmation tree, the full set of 
involved participants, and has access to encrypted messages. This is not dissimilar to an 
internet ISP that learns all servers who are communicated with and how much, and also 
has access to all encrypted packages, but is unable to decrypt the payloads. 
 
Smart contracts come in twice here, during interpretation and validation. The important 
extra requirement this consensus protocol imposes on the language stack is the 
uniqueness property described under interpretation. In the mental model of exercise 
actions being procedure calls, this property is equivalent to determinism of the 
procedures. 
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2.5 Smart Contracts in Canton 
In some sense, the role of smart contracts in Canton is simple. They are a constructive 
specification of the contract model. Constructive in the sense that they are not a predicate 
like scripts in Bitcoin, or contracts in Corda, which each put constraints on transactions 
that are built using separate code paths. Instead, the conformant transactions are exactly 
those that can be built by the smart contract code, and the same code can be used for 
validation.  
 
This makes development conceptually easier in two ways.  

Firstly it’s aligned with the prevalent imperative thinking in transactional systems 
and programming. If one were to implement an Iou registry in memory or using SQL, it is 
natural to ask the question “What should a call to transfer do?”, rather than thinking in 
terms of transaction constraints like ”What invariants should any transaction on my system 
conserve?”. This is one of the great benefits of Ethereum's account based system with 
replicated state machines. Mutating state through imperative calls is strongly aligned with 
many developers’ way of thinking. Canton gets close to that in a UTXO model. 

Secondly, it means there is only one code path. Many other eUTXO systems have 
one code path to construct transactions, and a second to validate them. The construction 
is often considered “off-ledger” even though it is just as important for a functioning system 
as the validation. 

 
Composition is also aided by the constructive nature of the specification and the property 
that the contract model is closed under subtransactions. Imagine a naive way of 
implementing a “transfer” using a classic eUTXO model by saying “transactions are valid 
exactly if they have one input and one output with equal amounts, and the transaction is 
signed by the owner of the input”. Now a developer that wants to implement an atomic 
swap is stuck, as such a transaction has two inputs and two outputs. The developer of the 
original transfer has to prepare for this by expressing validity with great care: “transactions 
involving this token as an input are valid if the sum of amounts across all tokens of 
matching type is equal to the sum of the amounts on the output tokens of this type, and 
the transaction is signed by all owners on any of the inputs”. 
​ Contrast constructive eUTXO transactions as in Canton as illustrated here. 
Developer one specifies that a transfer is conformant by writing a procedure that creates 
consuming “transfer” exercise on an asset with the creation of a new asset as its sole 
consequence. Developer two extends the contract model by constructing swaps. They 
write a procedure that calls the “transfer” procedure for the delivery and payment assets 
respectively. This way of composing aligns 
with the imperative mindset, and the 
closure under subtransactions. This is 
where the correspondence between 
exercise actions and procedure calls 
comes back into play. From a developer 
perspective, composition is via procedure 
calls to previously specified procedures. 
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From a ledger model perspective, 
composition is achieved by specifying new 
conformant actions that have previously 
specified conformant actions as 
consequences. 
 
Packages are units of smart contract code 
in Canton used to extend the contract 
model. They are identified in a globally 
unique way through their package Id, which 
is a hash of their “binary” representation 
which is distributed. Every create and 
exercise action references an identifier 
within a package, either a template or a 
choice.  
 
Templates are smart contract code 
corresponding to create actions. By analogy, 
one can think of templates as equivalent to 
a class definition in an object oriented language. Templates consist of a data type for the 
create arguments of a contract, as well as functions which compute contract metadata 
and invariants like signatories and observers from those arguments. These functions are 
called during (re-)interpretation when a contract of this type is written or read. 
​ Due to this dual purpose of templates it also sometimes makes sense to 
distinguish the contract arguments, the data payload that the contract stores, and the 
contract itself, which is the result of instantiating the template with given arguments. 
 
Choices are code corresponding to exercise actions. Similar to the above analogy, one 
can think of choices as equivalent to class methods in an object oriented language. They 
take exercise arguments and compute exercise actions, consisting both of metadata like 
the actors as well as the consequences.  The code specifically computing the 
consequences is called the choice body. A choice corresponds exactly to the “transfer” 
and “swap” procedures in the illustrative example above.  
 
Data Serializability is needed for both contract and exercise arguments. Canton uses 
gRPC51 APIs throughout, so all serializable data needs to be easily mappable to Protocol 
Buffer (protobuf)52 messages. Contract and exercise arguments form an essential part of 
commands that users send to the API, of the Canton ledger model transactions that a 
user gets back from the API, and of the views as part of the confirmation request that is 
distributed through the synchronizer.  
 

52 Protocol Buffers (protobuf) website, https://protobuf.dev/  
51 gRPC website, https://grpc.io/  
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Package Vetting is the process by which parties (technically currently participants) say 
which packages they are willing to participate in. The vetting state is part of the topology 
state and changed through topology transactions. New packages allow the application of 
new templates and choices to existing contracts, which makes it possible to upgrade 
smart contracts. However, since a party authorizes any choice on a contract that they are 
signatory on, adding choices needs mutual agreement from all signatories. This is 
achieved through vetting. 
 
In conclusion, at a very high level, we need the following from a smart contract language 
stack for Canton: 
​ A surface language that makes it easy for a developer to express both the 
serializable data types of choice and exercise arguments, as well as the procedures 
corresponding to templates and choices. The procedure that computes the exercise 
consequences must be able to reference templates and choices from other (dependency) 
packages to allow for composability. 
​ A compiler that turns the surface language into a package containing some sort of 
executable bytecode or intermediary language, including template and choice definitions. 
​ An interpreter/VM that runs the bytecode. 
​ The interpreter is hosted by a canton ledger engine (or just ledger engine), which 
is in charge of all (re-)interpretation. The canton ledger engine connects to API, private 
contract store (PCS), and consensus client, and hosts the interpreters. It is called by the 
API or consensus client to perform a (re-)interpretation. To do so, it acts as a builder for 
Daml-LF transactions. For any command (or action) that it needs to interpret, it resolves 
the package and any inputs from the PCS, and then calls the appropriate interpreter to 
compute metadata or consequences. When the interpreter wants to append a 
consequence, it calls a host function provided by the ledger engine, which passes back 
control from the interpreter to the ledger engine. The ledger engine can now repeat this 
recursively, maintaining a call stack of choices. This illustrates again how the tree of 
actions corresponds closely to a call graph of smart contract functions. The ledger engine 
is also responsible for checking authorization on the fly. 

The contract between ledger engine and interpreter is that computations by the 
interpreter need to be fully deterministic. The resulting transactions are thus conformant 
by construction. Determinism includes certain safety properties: Isolation between parallel 
transitions. Isolation from the system, and similar. 

The consensus client can independently take care of consistency checks, and 
perform blinding, sequencing, confirmation, and commit. 
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The interaction between the ledger engine and the smart contract code running in the 
interpreter can be expressed as a series of function evaluations to either pure or update 
expressions. The computation of contract and exercise metadata (e.g. signatories) are 
pure expressions. They are side-effect free and can neither read, nor update ledger state 
beyond the arguments supplied.  
 

signatory expression: (Contract Arguments => [Party]) 
 
The choice body is an update expression. The signature of such an expression is similar 
to a pure one, but as part of the computation, it can both read and update ledger state by 
calling back to the engine to trigger consequences. 
​
​ choice body expression: ((Contract Arguments, Exercise Arguments) => Return 
Value)  
 
The engine maintains ledger state starting from an initial state S against which 
interpretation is run. As update expressions create consequences, a partial transaction T 
is built up, and the engine maintains the resulting ledger state S’. Any read operations in 
an update expression are performed against the S’ obtained by applying the partial 
transaction up to that point to S: 
 

S’ = S + T 
 
The final resulting Daml transaction T is then projected onto Canton views and submitted 
as a confirmation request for validation and will only be applied if the interpretation result 
based on S is invariant with respect to the actual ledger state at sequencing time S’’ of the 
confirmation request. This  means that if two transactions race to modify related ledger 
state, one of them will fail, which may require a resubmission of the command. This 
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resubmission might result in a different transaction due to the fact that the ledger state 
changed in the meantime. The advantage of this implementation is the ability to run all 
expensive computations and read-write operations in parallel, while restricting the 
sequential computation part to in-memory conflict checking, resulting in throughputs well 
above 8k actions per single participant node (Daml Enterprise 2.8.0). 

3 Daml 
The design of the Daml smart contract language was driven by a number of factors laid 
out in the Daml whitepaper53. In summary, it allows developers to express the construction 
rules of a contract model for Canton concisely, safely, and rapidly as it provides domain 
specific primitives for templates, choices, and all their “metadata” like signatories and 
observers. 
All this needs to be solved under a hard constraint for determinism and safety as covered 
in section 2.5. In the years before ecosystems like Cosmos (CosmWasm54) and Polkadot 
(Substrate55) in 2019, this was a hard problem to solve. Smart contract blockchains took 
one of three approaches, illustrated here by example. 
 
Hyperledger Fabric is designed to simply deal with non-determinism56. This has a great 
advantage that it can support any general purpose language. It has the disadvantage that 
any non-determinism effectively leads to forks. The chain may contain transactions that 
some participants deem invalid. Furthermore, running vanilla general purpose code is 
inherently unsafe as it can access the system and perform I/O. Sandboxing in containers 
is a way to alleviate this, but realistically, this design restricts smart contracts to trusted 
code. 
 
Corda attempted to modify Java, a specific existing general purpose language, to be 
deterministic. This required the development of a deterministic Java Virtual Machine 
(dJVM)57. This has the same advantage of using a general purpose language as Fabric’s 
approach, and removes some of the disadvantages. But this approach has a high cost 
and difficulty. After years of development, the dJVM was removed from Corda in 202358. 
Secure EcmaScript (SES)59 is another initiative in this direction. 
 
Daml, similar to Solidity for Ethereum, represents the third way by developing an entirely 
custom stack, consisting of custom surface language tailor made for the ledger model, 
and a fully deterministic, safe, custom engine that exposes a domain specific set of host 
functions. 

As previously discussed, Canton’s ledger model was historically called the Daml 
ledger model as this approach allows tight cohesion between language and ledger model. 
 

59 Secure EcmaScript, GitHub, https://github.com/tc39/proposal-ses  
58 Corda 4.11 release notes, https://docs.r3.com/en/platform/corda/4.11/enterprise/release-notes-enterprise.html#djvm-removal   
57 dJVM code repo, https://github.com/corda/djvm  
56 Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, Elli Androulaki et al, 2018, https://arxiv.org/abs/1801.10228      
55 Preparing for Polkadot’s launch with substrate, Blog, 2019, https://polkadot.com/blog/preparing-for-polkadots-launch-with-substrate  
54 CosmWasm History, https://cosmwasm.com/home/history/  
53

 Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows, Bernauer et al, 2019, https://arxiv.org/abs/2303.03749   
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Daml’s stack as presented in section 2.5 consists of the surface language, which will be 
introduced by example in section 3.1, a compiler based on the Glasgow Haskell Compiler 
(GHC)60, an intermediary language, Daml-LF, that is output by a custom compiler 
backend, and the Daml engine. Section 3.2 discusses the technical stack further, in 
particular to highlight integration points and modifications for the integration of additional 
languages. 
 
Haskell was used as a basis for Daml both for the ease with which domain specific 
languages can be embedded in GHC, as well as for Haskell’s compatibility with the 
determinism requirement. Pure functional languages are specifically designed to isolate 
side effects, which are the primary source of non-determinism. 

3.1 Surface Language 
The example shown here is the 
simple* token and swap model 
corresponding to the examples 
used in the Canton ledger model 
section (2.3). 
 
There are two types of creates in 
this transaction, meaning two 
templates are needed: Asset and 
SwapOffer. Illustrated here is the 
Asset. 
 
*A more realistic example with both 
the issuers and owners as 
signatories requires additional 
preparatory steps leading up to the 
DvP, and would make it challenging 
to compactly illustrate a valid ledger 
leading up to the atomic swap 
transaction.  

60 GHC homepage, https://www.haskell.org/ghc/   

 

27 

https://www.haskell.org/ghc/


Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network 
 

-- Asset is a template with a data type carrying the issuer and owner 

-- which are Parties as defined in section 2.2. 

template Asset 

 with 

   issuer : Party 

   owner  : Party 

   symbol : Text 

   quantity : Decimal 

 where 

-- The diagram tells us that the issuer should be the signatory. 

   signatory issuer 

-- The owner should have assets in their private contract store, so 

-- they are added as an extra informee to create and consuming archive 

-- events. This is done through the observer metadata which works 

-- in analogy to signatory. 

—- Typically the owner would also be a signatory but for illustration  

—- purposes we model the owner as an observer in this example 

   observer owner 

 

-- We have a single choice Transfer. Its sole argument is the new owner, 

-- and it returns the reference to the newly created output. 

   choice Transfer : ContractId Asset 

     with 

       newOwner : Party 

-- The actors for the resulting exercise are specified through the 

-- `controller` metadata on the choice. 

     controller owner 

-- Consequences are computed in the choice body. In this case, the sole 

-- consequence is the creation of a new Asset with the new owner. 

     do create this with 

          owner = newOwner 

 

 
As we can see from this, Daml encapsulates choices in templates. The choices that apply 
to a contract created through a template are expressed on the template itself. This gives 
Daml an almost object oriented character, where templates are classes, and choices are 
methods. 
 
The Cash template looks identical to Asset so this example uses Asset for both. The 
SwapPropsosal is shown here: 
 
template SwapProposal 

 with 

   from : Party 

   to : Party 

 

28 



Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network 
 

   swap_from : ContractId Asset 
   swap_to : ContractId Asset 

 where 

   signatory from 

   observer to 

 

   choice Accept : (ContractId Asset, ContractId Asset) 

     controller to 

     do 

       -- Check that ownerships match. 

       -- `fetch` is another ledger action similar to nonconsuming 

       -- exercises which reads active contracts. 

       fromAsset <- fetch swap_from 
       toAsset <- fetch swap_to 

       assert (fromAsset.owner == from) 

       assert (toAsset.owner == to) 

 

       swap_from' <- exercise swap_from Transfer with newOwner = to 

       swap_to' <- exercise swap_to Transfer with newOwner = from 

 

       return (swap_to', swap_from') 

 

 
Daml’s IDE has the ability to simulate Canton ledgers in a script, used here to 
demonstrate a ledger leading up to a swap: 
 
 
simulate : Script () 

simulate = script do 

 -- Topology transactions to set up identities. 

 -- Scripts assume parties are single-hosted 

 -- on distinct participants. 

 -- Package vetting is not needed in scripts. 

 alice <- allocateParty "Alice" 

 deborah <- allocateParty "Deborah" 

 bank <- allocateParty "Bank" 

 csd <- allocateParty "CSD" 

 

 -- Submit first commit to create cash. 

 -- `submit party` corresponds to a commit with 

 -- `party` as top level authorizer. 

 -- Note this is two commands in a single commit. 

 swap_from <- submit bank do 

   createCmd Asset with 
     issuer = bank 
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     owner = alice 
     symbol = "USD" 

     quantity = 100.0 

  swap_to <- submit csd do 

   createCmd Asset with 

     issuer = csd 

     owner = deborah 

     symbol = "ACME" 

     quantity = 1.0 

 

 -- Make a SwapOffer via another commit. 

 offerCid <- submit alice do 

   createCmd SwapProposal with 

     from = alice 

     to = deborah 

     swap_from = swap_from 

     swap_to = swap_to 

 

 -- Alice needs to give Deborah details about her asset 
 -- in order for her to be able to interpret the swap. 

 Some disclosedFromAsset <- queryDisclosure alice swap_from 

 

 -- Swap in a third commit. 

 -- Bob needs to augment his private store with information 

 -- about Alice's asset. 

 submitWithDisclosures deborah [disclosedFromAsset] do 

   exerciseCmd offerCid Accept 

 return () 

 

 
The resulting ledger is exactly the one from 2.3: 
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The above presents the Daml language purely as a tool for expressing the Canton ledger 
model. A different mental model helpful for many learners of Daml is an analogy with 
databases. The below uses postgreSQL syntax to illustrate. 
 
A template’s type corresponds to a table. 
 

  template Asset 

    with 

      issuer : Party 

      owner  : Party 

      symbol : Text 

      quantity : Decimal 

  CREATE TABLE Asset( 

    id        SERIAL PRIMARY KEY, 

    issuer    TEXT  NOT NULL, 

    owner     TEXT  NOT NULL, 

    symbol    TEXT  NOT NULL, 

    quantity  REAL  NOT NULL); 

 
Creates correspond to inserts. 
 

  submit bank do 

    createCmd Asset with 

      issuer = bank 

      owner = alice 

      symbol = "USD" 

      quantity = 100.0 

INSERT INTO Asset (issuer, owner, symbol, quantity) 

VALUES (‘Bank’, ‘Alice’, ‘USD’, 100.0) 

 

 

 

 

 
Contracts/UTXOs correspond to table rows. Archiving/spending a contract corresponds to 
deleting rows. There is no equivalent of an update operation on a database. 
 
Signatories correspond to row based write access controls. Observers correspond to row 
based read access controls.  
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  signatory issuer 

 

 

 

  ALTER TABLE Asset ENABLE ROW LEVEL SECURITY; 

 

  CREATE POLICY asset_issuers ON Asset 

      USING (issuer = current_user); 

   observer owner 

 

 

  CREATE POLICY asset_owners ON Asset 

      FOR SELECT 

      USING (owner = current_user); 

 
Choices correspond to stored procedures with atomic bodies, exercises to calls. 
  choice Transfer : () 

    with 

      newOwner : Party     

    controller owner 

  do 

    create this with 

      owner = newOwner 

 

CREATE PROCEDURE transfer(asset_id INT, new_owner TEXT) 

LANGUAGE SQL 

BEGIN ATOMIC 

  INSERT INTO Asset (issuer, owner, symbol, quantity) 

    (SELECT issuer, new_owner, symbol, quantity 

      FROM Asset WHERE id = asset_id); 

  DELETE FROM Asset WHERE id = asset_id; 

  END; 

  exercise swap_from Transfer  

    with newOwner = to 

CALL transfer(swap_from, newOwner); 

 

 
There are no exact analogies for choice controllers, and Daml’s authority transfers from 
the signatories of an input contract of an exercise to any calls made within its choice body. 
Daml templates and choices can also be seen as an API specification since creates and 
exercises are the primary actions a user can take via Canton’s ledger API.  

3.2 Language Stack 
The damlc compiler compiles Daml source code to an intermediary language called 
Daml-LF, short for Daml Ledger Fragment. Damlc is implemented using a fork of GHC (a 
Haskell compiler). GHC type checks and compiles the Daml source code into terms based 
on System-Fω

61, an extension of the simply typed lambda calculus. GHC is configured to 
compile Daml code deterministically - this allows participants to verify that uploaded 
Daml-LF has been derived from a given or known set of Daml sources. 
​  
Daml-LF62, when viewed as a term rewriting system, is strongly normalizing. Hence, 
Daml-LF is interpreted deterministically to a unique resulting value, regardless of how that 
evaluation proceeds. 
 
Daml Packages are the result of compiling Daml source files into module-scoped 
Daml-LF expressions, and are stored in Dalf files. 

62 Daml-LF specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/spec/daml-lf-2.rst  
61 System FC, as implemented in GHC, Simon Peyton Jones, https://gitlab.haskell.org/ghc/ghc/-/blob/master/docs/core-spec/core-spec.pdf  
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Multiple Dalf files may be zipped together, along with some metainformation, to 
form a Dar file. Dar files may then be uploaded to Canton participants for vetting and use 
by the participant’s Daml engine during, for example, submission, reinterpretation or 
replay. 
​ Dar files are usually in one to one correspondence with packages and contain the 
original compiled Daml source modules, along with all transitive compiled module 
dependencies. 

Package IDs are the unique hashes (e.g. SHA256) of the Dalf file contents (i.e. the 
compiled Daml modules). As Daml source code is deterministically compiled, package IDs 
may always be verified by anyone who has access to the Daml sources. 
 
Speedy is Canton’s Daml-LF interpreter. It is an efficient CEK machine63, interpreting the 
lfpackage terms using a (non-serializable) internal value model, ultimately producing a 
transaction. The speedy interpreter is pure and needs to be hosted in an engine that 
connects it to storage and network. 
 
The Daml Engine 
performs roughly the role 
of the Canton ledger 
engine described in 
section 2.5. It connects 
Speedy to ledger API, 
PCS, and consensus 
components. The main 
delta between the 
idealized model shown 
in 2.5 and the 
implementation is that it is Speedy which builds transactions, not the engine. This is one 
of the changes section 4 addresses for the purpose of hosting other interpreters.  As the 
interpreter and engine build the transaction tree, authorization checks are performed and 
a contract state machine is used to validate all potential updates of the participant’s active 
contract store.  
 
Daml Engine Builtin Commands are used in Daml-LF to define updating ledger 
operations as side effects. These builtin commands allow contracts to be created and 
fetched. They also allow sub-transactions to be opened as contract choices start their 
evaluation and closed when that evaluation successfully terminates. Should a 
sub-transaction's evaluation fail in any manner, the sub-transaction can be closed by 
aborting it. A finalized transaction will have no open sub-transactions - i.e. they will all 
have been closed or aborted. This paper refers to the collection of Daml-LF and engine 
builtin commands as the engine host interface. 

63 Distilling abstract machines, Accattoli, Barenbaum , Mazza, 2014, https://dl.acm.org/doi/10.1145/2628136.2628154  
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When contract choices are exercised, it is important to ensure that sub-transaction 
evaluation is isolated. In other words, separate sub-transactions should not interact with 
each other except via ledger state. The Daml engine achieves this as: 

●​ Daml-LF expressions have no access to state other than via triggering actions, 
●​ and the Daml engine shares no internal state when evaluating Daml-LF 

expressions. 
 
Daml Engine Resource Safety and Security are ensured by breaking up evaluation into 
a series of partial evaluation stages. This allows the Daml engine to be regularly 
interrupted allowing Canton participants to control the engine’s compute budget. 
Interruptions occur after a fixed number of evaluation iterations by Speedy. 

In addition, the Daml engine bounds the depth to which recursive calls may be 
made when evaluating Daml-LF expressions. This avoids JVM stack overflows when 
evaluating Daml-LF expressions. 

To ensure that Canton participant memory resources are resilient to scenarios 
where the Daml engine has aggressive memory allocation demands, Canton uses 
package vetting. With package vetting, Canton participants only run packages that they 
have actively permissioned. Thus, no participant is forced to run untrusted code. 

The Daml engine implementation targets the JVM to aid portability and to ensure 
that its implementation is decoupled from the host operating system. 
 
 
The Daml-LF transactions64 produced by interpreter and engine and as introduced in 
2.4, are protobuf messages that can be processed further by the consensus client. The 
transaction schema captures the tree structure of Canton ledger model actions with all its 
metadata. Serializability of Daml-LF transactions is key as its nodes form an integral part 
of the confirmation request views which are transmitted over the wire.  
 
Daml-LF values65 are the serializable constant terms that can appear in transactions. It’s 
a protobuf AST that describes: 

●​ data values such as unit values, booleans, integers, numerics, strings, dates and 
timestamps 

●​ structured data such as optionals, sorted maps, sorted lists and records (sorted by 
field name) 

●​ and ledger oriented data values such as contract IDs and parties. 
 
LF values are used to encode: 

●​ arguments for template constructor functions 
●​ arguments for template choice functions 
●​ and result values returned from exercising a contract’s choice function. 

 

65 Daml-LF value specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/value.proto 
64 Daml-LF transaction specification, https://github.com/digital-asset/daml/blob/main/sdk/daml-lf/transaction/src/main/protobuf/com/digitalasset/daml/lf/transaction.proto  
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Decoupling Daml from Canton and allowing additional languages to be supported 
requires a clean separation between the Daml-specific parts of this stack and those that 
need to be shared by all supported languages for interoperability and integration. Section 
4 will demonstrate by example how engine, LF transactions, and LF values can be 
decoupled from Speedy and LF terms in such a way that a second language and 
interpreter can be hosted with full Daml interoperability. 

4 Wasm-based Smart Contracts in Canton 
WebAssembly (abbreviated Wasm) is a “safe, portable, low-level code format”66, similar 
to JVM ByteCode or Daml-LF. Wasm is used in both web and non-web use cases to run 
untrusted code in a strong sandbox67. Two of its properties make Wasm particularly useful 
for executing smart contracts: 
 

●​ Deterministic Execution: Applications execute deterministically with a limited set of 
well-defined exceptions68. This enables the reinterpretation and validation of 
transactions produced by smart contracts where the output of a smart contract 
must be consistent across all nodes executing it. 
 

●​ Controlled Side-Effects: By default all applications are pure without any 
side-effects. Side-effects are strictly controlled via a set of host functions, which 
depend on the use case. 

 
Wasm code is organized in modules69 which include imports and exports. Imports include 
functions that the Wasm code requires to be provided by an instance of the Wasm engine, 
which could be satisfied with host functions or by loading another module. Exports include 
functions that are provided by the Wasm code and can be called by the host (or another 
module that imports those exported functions). 
 
Wasm’s safety and structural properties, the many languages that can compile to Wasm, 
and its community support make it an ideal candidate for an additional interpreter next to 
Speedy.  
This section presents initial work70 to integrate the Chicory Wasm runtime71 in Canton and 
program Canton native contracts using high level languages like Rust and 
AssemblyScript. 

Section 4.1 picks up from sections 2.5 and 3.2 to show how engine, 
LF-transactions, and LF-values can be decoupled from Speedy and LF-terms such that a 
second interpreter can be hosted in Canton. A key property that’s demonstrated here is 
the ability to make smart contract calls between Daml contracts and Wasm contracts. 
Section 4.1 uses Rust as a surface language to generate Wasm, and interacts with the 

71 Chickory Wasm runtime, Github, https://github.com/dylibso/chicory  
70 Wasm Engine integration in Canton, Github, https://github.com/digital-asset/daml/pull/20159  
69 Webassembly Design Documentation on Modules,  https://github.com/WebAssembly/design/blob/main/Modules.md 
68 WebAssembly Documentation on nondeterminism,  https://github.com/WebAssembly/design/blob/main/Nondeterminism.md  
67 WebAssembly Design Documentation on Security, https://github.com/WebAssembly/design/blob/main/Security.md  
66 Introduction to the WebAssembly Specification, https://webassembly.github.io/spec/core/intro/introduction.html  
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engine host interface at a low level, explicitly manipulating the bytestrings used for data 
interchange between engine and interpreter. 

Section 4.2 explains which of the aspects explained in section 4.1 can be 
abstracted away using libraries and code generation to illustrate what a finished 
programming experience for Wasm-based Canton smart contracts could look like. 

 

4.1 Wasm Interpreter in Canton 
The Chicory Wasm runtime was chosen for integration in Canton both because it is JVM 
based, but also because it supports lightweight invocation of many interpreter instances 
which is needed to prevent any global state affecting determinism.   
 
As laid out in sections 2.5 and 3.2, there are three primary interactions between engine 
and interpreter. Firstly, the interpreter needs to be able to call engine host functions for 
consequences, most importantly to create another contract, or to call a choice on another 
contract. Secondly, the engine needs to be able to call the interpreter for pure expressions 
used for contract and exercise metadata. Thirdly, the engine needs to be able to call the 
interpreter for update expressions, most notably for choice bodies.  
 
Host and Guest are used in this section, respectively, to refer to the engine, and the code 
running in the Wasm interpreter. 
 
The engine host functions for ledger consequences are specified in a Scala trait: 
 
 

  trait WasmHostFunctions { 

    def logInfo(msg: String): Unit 

    def createContract(templateCons: Ref.TypeConRef, args: LfValue): LfValue.ContractId 

    def exerciseChoice( 

       templateId: Ref.TypeConRef, 

       contractId: LfValue.ContractId, 

       choiceName: Ref.ChoiceName, 

       choiceArg: LfValue, 

   ): LfValue 

 } 

 
Pure and update expression evaluation distinctions are enforced through two sets of 
host function implementations, one for pure evaluation (PureWasmHostFunctions), and 
one for update expressions (UpdateWasmHostFunctions). Calling the host functions in the 
pure instance simply results in an error. 
 
 

  object PureWasmHostFunctions { 

   import WasmUtils._ 

   import internal.WasmRunnerHostFunctions._ 
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    val createContractFunc: WasmHostFunction = 

     wasmFunction("createContract", 2, WasmValueResultType) { _ => 

       throw new RuntimeException( 

         "Host functions can not be called from pure WASM exported functions: createContract" 

       ) 

     } 

    val exerciseChoiceFunc: WasmHostFunction = 

     wasmFunction("exerciseChoice", 4, WasmValueResultType) { _ => 

       throw new RuntimeException( 

         "Host functions can not be called from pure WASM exported functions: exerciseChoice" 

       ) 

     } 

 } 

 
Data transfer between host and guest is done through memory pointers. WebAssembly 
only supports primitive types72 and relies on the application to build complex types, such 
as strings or bytestrings, on top of those primitive types.  

In this section all data exchange is done via bytestrings, represented as a tuple 
(pointer: i32, length: i32). i32 is used as the Wasm memory is currently limited to 32-bit 
addressing. 

Host functions are limited to returning a single value, therefore a pointer: i32 to the 
bytestring tuple is returned. Thus all data interchange between engine and interpreter is 
done by passing memory pointers to bytestrings between the host and guest. All this is 
taken care of by the wasmFunction construct seen above. 
 
   

  private[wasm] def wasmFunction(name: String, numOfParams: Int, returnType: 
Option[WasmValueType])( 

     lambda: Array[ByteString] => ByteString 

 ): WasmHostFunction = { 

   new WasmHostFunction( 

     (instance: WasmInstance, args: Array[WasmValue]) => { 

       require(args.length == numOfParams) 

 

       copyByteString( 

         lambda((0 until numOfParams).map(copyWasmValues(args, _)(instance)).toArray) 

       )(instance) 

     }, 

     "env", 

     name, 

     (0 until numOfParams).flatMap(_ => WasmValueParameterType).asJava, 

     returnType.toList.asJava, 

   ) 

 } 

72 WebAssembly Documentation on Types,  https://webassembly.github.io/spec/core/syntax/types.html  
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Explicit memory management between host and guest is required by the Wasm 
runtime. This is done inside the copyByteString and copyWasmValues functions above. 
 
 private[wasm] val WasmValueParameterType = List(WasmValueType.I32) 
 private[wasm] val WasmUnitResultType = None 

 private[wasm] val WasmValueResultType = Some(WasmValueType.I32) 

 private[wasm] val i32Size = WasmValueType.I32.size() 

 

 private[wasm] def copyWasmValue(values: Array[WasmValue])(implicit 

     instance: WasmInstance 

 ): ByteString = { 

   copyWasmValues(values, 0) 

 } 

 

 private[wasm] def copyWasmValues(values: Array[WasmValue], index: Int)(implicit 

     instance: WasmInstance 

 ): ByteString = { 

   require(0 <= index && index < values.length) 

 

   val byteStringPtr = values(index).asInt() 

   val ptr = instance.memory().readI32(byteStringPtr) 

   val size = instance.memory().readI32(byteStringPtr + i32Size) 

 

   ByteString.copyFrom( 

     instance.memory().readBytes(ptr.asInt(), size.asInt()) 

   ) 

 } 

 

 private[wasm] def copyByteString( 

     value: ByteString 

 )(implicit instance: WasmInstance): Array[WasmValue] = { 

   copyByteArray(value.toByteArray) 

 } 

 

 private[wasm] def copyByteArray( 

     value: Array[Byte] 

 )(implicit instance: WasmInstance): Array[WasmValue] = { 

   if (value.isEmpty) { 

     Array.empty 
   } else { 

     val alloc = instance.export("alloc") 

     val valuePtr = alloc.apply(WasmValue.i32(value.length))(0).asInt 

     val byteStringPtr = alloc.apply(WasmValue.i32(2 * i32Size))(0).asInt 
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     instance.memory().write(valuePtr, value) 

     instance.memory().writeI32(byteStringPtr, valuePtr) 

     instance.memory().writeI32(byteStringPtr + i32Size, value.length) 

 

     Array(WasmValue.i32(byteStringPtr)) 

   } 

 } 

 
In order to obtain a valid pointer in the guest’s memory, the host needs access to memory 
allocation and deallocation methods by the guest. The guest module provides an 
implementation of memory management aligned with the guest’s language specific 
memory constraints and exports those functions to the host. Such a call is visible above in 
instance.export(“alloc”). 

For example, in Rust, memory allocation and deallocation methods are 
implemented as the following, which needs to exclude the allocated memory from Rust’s 
ownership-based memory manager, otherwise the memory will be deallocated before the 
host can use it. 
 
 

    pub fn alloc(len: usize) -> *mut u8 { 
       let mut buf = Vec::with_capacity(len); 

       let ptr = buf.as_mut_ptr(); 

       std::mem::forget(buf); 

   

       return ptr; 

   } 

   

   pub unsafe fn dealloc(ptr: *mut u8, size: usize) { 

       let data = Vec::from_raw_parts(ptr, size, size); 

       std::mem::drop(data); 

   } 

   

 
The guest code represents the bytestring tuple of pointer and length as: 
 
    
   #[repr(C, packed)] 

   #[allow(non_snake_case)] 

   pub struct ByteString { 

       pub ptr: *const u8, 

       pub size: usize, 

   } 
 
Deterministic execution of Wasm based smart contracts is largely supported out of the 
box.  The execution of a WebAssembly application is deterministic with a few well-defined 
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exceptions outlined in the Wasm documentation on nondeterminism73. Features that lead 
to nondeterminism such as threads or SIMD are not enabled for the execution of smart 
contracts. Nondeterminism stemming from floating point arithmetic and NaN bitwise 
representations can be mitigated either by NaN canonicalization by the engine or through 
code instrumentation. 

However, with projections and sub-transactions in the Canton ledger model there 
is another potential source of non-determinism during reinterpretation. Wasm supports 
mutable global variables, which in principle allows for the passing of information from one 
action to another outside of ledger state and exercise arguments. Different participants 
may have different actions as their entry-point of their views of the transaction. 
Consequently, participants execute only part of the original Wasm application that 
produced the entire transaction in the first place. This could result in different values in 
global variables, and thus non-deterministic behavior.  

Therefore, it is crucial that the execution of every pure or update expression is 
done in a Wasm engine instance that does not have any global state from prior execution. 
This is accomplished by creating a new Wasm interpreter for every call both during 
interpretation and re-interpretation. Depending on pure or update use, the interpreter is 
instantiated with different host function implementations. 

 
   

  private def PureWasmInstance(): WasmInstance = { 
   val imports = new WasmHostImports( 

     Array[WasmHostFunction]( 

       ... 

       PureWasmHostFunctions.createContractFunc, 

       PureWasmHostFunctions.exerciseChoiceFunc, 

     ) 

   ) 

 

   WasmModule.builder(wasmExpr.module.toByteArray).withHostImports(imports).build().instantiate() 

  } 

 

  private def UpdateWasmInstance(): WasmInstance = { 

   val imports = new WasmHostImports( 

     Array[WasmHostFunction]( 

       ... 

       createContractFunc, 

       exerciseChoiceFunc, 

     ) 

   ) 

 

   WasmModule.builder(wasmExpr.module.toByteArray).withHostImports(imports).build().instantiate() 

  } 

73 WebAssembly Documentation on nondeterminism,  https://github.com/WebAssembly/design/blob/main/Nondeterminism.md  
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Wasm based templates and choices must expose their pure and update expressions 
using a naming convention. For example, a template SimpleTemplate must expose the 
signatories expression as SimpleTemplate_signatories so that the engine can invoke it 
correctly. 
 
The engine can now invoke Wasm-based smart contract code for either pure or update 
expressions, exchange arguments and return values, and handle calls to host functions 
for consequences in update expressions.  An example invocation is shown here: 
 
  val signatories = wasmTemplateSignatoriesFunction 
   (templateName, txVersion)(argsV)(PureWasmInstance()) 

 
wasmTemplateSignatoriesFunction takes care of the naming convention and return value 
unwrapping. 
 
 private[wasm] def wasmTemplateSignatoriesFunction( 
     templateName: String, 

     txVersion: TransactionVersion, 

 )( 

     contractArg: LfValue 

 )(implicit instance: WasmInstance): Set[Party] = { 

   wasmTemplateFunction(s"${templateName}_signatories", txVersion)(contractArg)  

    match { 

     case LfValue.ValueList(values) => 

       values 

         .map { 

           case LfValue.ValueParty(party) => 

             party 

           case _ => ... 

         } 

         .iterator 

         .toSet 

     case _ => ... 

   } 

 } 

 
wasmTemplateFunction takes care of bytestring (de-)serialization and passing, and 
invokes the Wasm runtime. 
 
 
 private[wasm] def wasmTemplateFunction( 
     functionName: String, 

     txVersion: TransactionVersion, 
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 )(contractArg: LfValue)(implicit instance: WasmInstance): LfValue = { 
   val function = instance.export(functionName) 

   val contractArgPtr = copyByteString( 

     LfValueCoder 

       .encodeValue(txVersion, contractArg) 

       .fold(err => throw new RuntimeException(err.toString), identity) 

   ) 

   val resultPtr = function.apply(contractArgPtr.head) 

   try { 

     if (resultPtr.nonEmpty) { 

       LfValueCoder 

         .decodeValue(txVersion, copyWasmValue(resultPtr)) 

         .fold(err => throw new RuntimeException(err.toString), identity) 

     } else { 

       LfValue.ValueUnit 

     } 

   } finally { 

     deallocByteString(contractArgPtr.head) 

     deallocByteString(resultPtr.head) 

   } 

 } 

 } 

 
Writing Canton smart contracts using Wasm requires: 
 

●​ access to the Wasm host functions for consequences 
●​ export guest functions according to the naming convention to the host 
●​ no use of any other host functions, in particular no dependency on WASI (Wasm 

System Interface)74 
 
Rust is a good choice for low-level integration due to its mature Wasm support and full 
control over import and export of functions. 
Host functions are declared as external functions by a low-level library, which will result 
in entries of the guest’s import table. For example, externally defined function for the 
createContract host function: 
 
 
   extern { 
 

       #[allow(non_snake_case)] 

       pub fn createContract<'a>(templateTyCon: &'a ByteString, arg: &'a ByteString) -> &'a 

ByteString; 

   

   } 

74
 WASI,  https://wasi.dev/  
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The other engine host functions are similarly defined as external functions. 
​ Guest exported functions for memory allocation and deallocation as shown in 
Explicit memory management are also provided by the low-level library. 
 
A mid-level ledger update library provides typed access to the engine host functions 
and the low-level library uses the basic ByteString type in order to pass data between the 
host and guest and this is not convenient to use for a smart contract developer. For 
example, here is mid-level createContract function: 
 
 
   pub fn createContract(templateTyCon: lf::Identifier, arg: lf::Value) -> lf::Value { 
       unsafe { 

         let templateTyConBytes = templateTyCon.write_to_bytes().unwrap(); 

         let argBytes = arg.write_to_bytes().unwrap(); 

         let templateTyConByteString = internal::ByteString { ptr: templateTyConBytes.as_ptr(), 

size: templateTyConBytes.len() }; 

         let argByteString = internal::ByteString { ptr: argBytes.as_ptr(), size: argBytes.len() 

}; 

     

         let contractIdByteString = internal::createContract(&templateTyConByteString, 

&argByteString); 

     

         return utils::to_Value(contractIdByteString.ptr, contractIdByteString.size); 

       } 

     } 

     

 
This wrapper performs the necessary steps to convert LF identifiers and LF values into 
low-level bytestrings that can be moved across the host-guest boundary. 

Similar wrapper functions exist for all the other low-level host functions to record 
ledger updates. 
 
Traits for templates and choices defined in the mid-level library define what methods a 
smart contract developer has to provide for both contract templates and contract choices. 
The template trait in Rust specifies (amongst other things) the need for a list of associated 
choices and expressions for signatories and observers: 
 
   

    pub trait Template<T> { 
       fn new(arg: lf::Value) -> T; 

 

       fn choices() -> HashMap<String, Box<dyn Choice>> { 

               return HashMap::new(); 
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       } 
   

       #[allow(non_snake_case)] 

       fn toLfValue(&self) -> lf::Value; 

     

       fn signatories(arg: lf::Value) -> lf::Value; 

   

       fn observers(arg: lf::Value) -> lf::Value { 

               let mut result = lf::Value::new(); 

               let empty = lf::value::List::new(); 

   

               result.set_list(empty); 

   

               return result; // lf::value::List<lf::value::Party> 

       } 

   } 

 
In full, the template trait captures the required functionality that needs to be implemented 
by a smart contract developer: 
 

●​ Creating a new template instance given an LF value argument 
●​ Return the template’s identifier 
●​ Return the choices defined for this template 
●​ Convert the template arguments back to an LF value 
●​ Optional preconditions that need to be satisfied by the template’s arguments 
●​ Metadata for the signatories, observers, key and maintainers 

 
Similarly, a Choice trait captures: 
 

●​ The kind, indicating if the choice is consuming or not 
●​ The exercise function for the choice body that computes the consequences 
●​ Metadata for the choice controllers, observers, and additional authorizers. 

 
 
 
SimpleTemplate is an example  of the implementation of the Template and Choice traits. It 
has  a contract state that contains an owner party and counter integer: 

 
   

   pub struct SimpleTemplate { 
       owner: String, 

       count: i64, 

   } 
 
The template is implemented as the following in Rust (excerpt): 
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   impl ledger::api::Template<SimpleTemplate> for SimpleTemplate { 
       fn new(arg: lf::Value) -> SimpleTemplate { 

         // SimpleTemplates are created using paired (record) arguments 

         let owner = ledger::utils::get_field(arg.clone(), 0).take_party(); 

         let count = ledger::utils::get_field(arg, 1).int64(); 

   

         return SimpleTemplate { 

                 owner: owner, 

                 count: count, 

           }; 

       } 

   

       fn choices() -> HashMap<String, Box<dyn ledger::api::Choice>> { 

           let mut result = HashMap::new(); 

   

           result.insert(String::from("SimpleTemplate_increment"),  
             Box::new(SimpleTemplate_increment) as Box<dyn ledger::api::Choice>); 

           result.insert(String::from("SimpleTemplate_decrement"),  

             Box::new(SimpleTemplate_decrement) as Box<dyn ledger::api::Choice>); 

   

           return result; 

       } 

   

       #[allow(unused)] 

       fn signatories(arg: lf::Value) -> lf::Value { 

            let mut owner = ledger::utils::get_field(arg, 0); 

            let mut result = lf::Value::new(); 

            let mut list = lf::value::List::new(); 

   

            list.elements = vec![owner]; 

            result.set_list(list); 

   

            return result; 

       } 

An excerpt of the increment choice is shown here: 
 
 impl ledger::api::Choice for SimpleTemplate_increment { 

   fn consuming(&self) -> lf::Value { 

     let mut result = lf::Value::new(); 

 

     result.set_bool(true); 

 

     return result; 

   } 
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   fn exercise(&self, contractArg: lf::Value, choiceArg: lf::Value) -> lf::Value { 
     assert!(choiceArg.has_unit()); 

 

     let contract = SimpleTemplate::new(contractArg); 

 

     let updatedContract = SimpleTemplate { 

         owner: contract.owner, 

         count: contract.count + 1, 

     }; 

 

     return ledger::api::createContract(SimpleTemplate::templateId(),  

       updatedContract.toLfValue()); 

   } 

 

   fn controllers(&self, contractArg: lf::Value, choiceArg: lf::Value) -> lf::Value { 

     assert!(choiceArg.has_unit()); 

 

     let owner = ledger::utils::get_field(contractArg, 0); 

     let mut result = lf::Value::new(); 

     let mut list = lf::value::List::new(); 

 

     list.elements = vec![owner]; 

     result.set_list(list); 

 

     return result; 

   } 

 } 

 
Exported guest functions for a template like SimpleTemplate need to follow the naming 
convention, and handle input and return values via pointers to ByteStrings. 

For example, the signatory computation function for SimpleTemplate: 
 
    

   impl templates::SimpleTemplate { 
       #[no_mangle] 

       pub unsafe fn SimpleTemplate_signatories(argPtr: *const ledger::internal::ByteString) -> 

*mut ledger::internal::ByteString { 

           use protobuf::Message; 

   

           let arg = ledger::utils::to_Value((*argPtr).ptr, (*argPtr).size); 

           let result = templates::SimpleTemplate::signatories(arg); 

           let resultBytes = result.write_to_bytes().unwrap(); 

           let boxedResult = Box::new(ledger::internal::ByteString { ptr: resultBytes.as_ptr(), size: 
resultBytes.len() }); 
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           std::mem::forget(resultBytes); 

   

           return Box::into_raw(boxedResult); 

       } 

   } 

 
 

In the current work, these low-level export functions are hand-written. Automatic 
generation with additional tooling is part of future work. 
 
Cross-language smart contract calls are possible and demonstrated in the current 
work.  
​ The host function for exerciseChoice of the engine dispatches the execution of the 
choice’s body either to the Wasm interpreter for Wasm based templates or to Speedy 
engine for Daml-based templates. In both cases, the ledger updates are recorded in a 
partial transaction builder in the engine.  

Contracts written in Rust and executed by the Wasm-based engine can create and 
call choices on  contracts written in Daml. For this the Rust template must have access to 
the template id of the Daml template as well as the choice name.  Similarly, Rust-written 
choice bodies can create contracts for Daml templates by providing the template id and 
contract arguments as an LF value. 

The reverse direction will need extensions to Daml in order to reference foreign 
templates and choices by id and name in similar fashion. 

Cross-interpreter interoperability is generally possible because data exchanged 
between Wasm and Daml for template arguments or choice arguments are always in the 
existing form of LF values. The engine takes care of transaction building and authorization 
checks. It does not matter how updates are produced as long as they are properly 
authorized. 

In the current work, the template ids, choice’s names and arguments are 
hand-written in the Rust code. A standardized way of expressing template and choice 
interfaces across languages would enable universal code generation to provide typed 
cross-language calls to choices and contract creation. 

4.2 High-level Language support 
Based on the Wasm interpreter and low- to mid-level Rust work in 4.1, this section covers 
the general building blocks required in a surface language for smart contract 
development. The goal is to remain as close as possible to a language’s standard 
compiler, IDE, development workflow, language syntax and programming model. Access 
to the Canton ledger model and concepts for smart contracts are provided in the form of 
libraries. 
 
A suitable surface language must have tooling support for Wasm, i.e., to compile down 
to Wasm bytecode. To work with the engine’s host interface, it must have the ability to 
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define and import host functions, the ability to define an arbitrary number of exported 
guest functions, and little or no dependency on other host functions such as WASI. As part 
of interacting with the engine, it must also have good support for protobuf 
(de-)serialization in order to work with Daml-LF. 
​ Low- and mid-level libraries as demonstrated in section 4.1 take care of host 
function imports, guest memory management, bytestring representations and pointer 
passing, and protobuf (de-)serialization to and from LF values. The results are mid-level 
wrappers for templates, choices, and their corresponding host functions (e.g. create and 
exercise actions). 
 
AssemblyScript is used here to illustrate just how different the result can look like 
between two Wasm-targeting languages like Rust and AssemblyScript, but also to 
illustrate a highly accessible high level language experience. 
​ The template trait and createContract mid-level function in Rust are represented in 
AssemblyScript by a template class with a fully implemented create method. The call to 
internal.createContract refers to the low-level library. 
 
 
export class Template { 

   private _arg: LfValue; 

    constructor(arg: LfValue) { 

     this._arg = arg; 

   } 

   arg(): LfValue { 

     return this._arg; 

   } 

   create<T>(): Contract<T> { 

     let templateIdByteStr = internal.ByteString.fromProtobufIdentifier( 

       templateId<T>().toProtobuf(), 

     ); 

     let argByteStr = internal.ByteString.fromProtobuf(this.arg().toProtobuf()); 

     templateIdByteStr.alloc(); 

     argByteStr.alloc(); 

     let contractId = LfValueContractId.fromProtobuf( 

       internal.ByteString.fromI32( 

         internal.createContract( 

           templateIdByteStr.heapPtr(), 

           argByteStr.heapPtr(), 

         ), 

       ).toProtobuf(), 

     ); 

     argByteStr.dealloc(); 

     templateIdByteStr.dealloc(); 

   } 
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A high-level language experience needs to go further by providing type-safe and 
convenient access to host functions, as well as a concise way to specify templates and 
choices. 
 
Ledger-specific wrapper types represent the native types in Daml-LF values on top of 
language primitive types. For example, Party as a wrapper for strings: 
 
class LfValueParty extends LfValue { 

   private _party: string; 

   … 

} 

 
High level, typed, ledger update methods are created by wrapping values in 
parameterized classes like Contract<T> already seen as a return type above. Similarly, 
the class Choice<T, A, R> can be parameterized by template, argument, and return types 
allowing for fully typed interaction with the ledger. 
 
export class Choice<T, A, R> { 

   private _contractArg: T; 

   ... 

 

   exercise(arg: A): R { ... } 

} 

 
 
Templates and Choices are implemented by extending the template and choice 
classes. 
 
export class SimpleTemplate extends api.Template { 

   private owner: string; 

   private count: i64; 

    constructor(owner: string, count: i64) { 

     super(toLfValue<SimpleTemplate>(owner, count)); 

     this.owner = owner; 

     this.count = count; 

   } 

   

   signatories(): Set<string> { 

     return new Set<string>().add(this.owner); 

   } 

 

   choices(): Map<string, SimpleTemplate_increment_closure> { 

     return super 

       .choices() 
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       .set( 

       "SimpleTemplate_increment", 

       new SimpleTemplate_increment(this), 

       ); 

   } 

} 

 
 
 
class SimpleTemplate_increment extends api.ConsumingChoice< 

 SimpleTemplate, i64, api.Contract<SimpleTemplate> 

> { 

 

… 

 

 exercise(arg : i64): api.Contract<SimpleTemplate> { 

   api.logInfo( 

     `called AssemblyScript SimpleTemplate_increment(${n}) with count = ${count}`, 

   ); 

 

   return new SimpleTemplate(_contractArg.owner, _contractArg.count + arg).create(); 

 } 

} 

 
Contracts are created and choices are exercised not by calling constructors of the 
Template classes or exercise functions on Choice objects, but through create() functions 
on template instances as seen above, or by calling the exercise<A>(choiceName : String, 
arg : A) function on Contract<T> instances which as per the above represent wrapped 
contract Ids. This is crucial to allow the engine to insert the appropriate actions in the 
partial transaction. 
 
LF Value Encoding and Decoding should be taken care of for the developer. There are 
two approaches for this, both of which still need further investigation. The first is to support 
near-arbitrary protobuf messages as contract and choice arguments instead of the current 
LF value hierarchy. In that case, the language specific protobuf compiler and 
(de-)serializers could be used directly instead of doing any custom encoding. 
​ Alternatively, code-generation could be used to generate the LF value codecs that 
are hand-written in the current work. 
 
 
export function toLfValue<SimpleTemplate>( 

   owner: string, 

   count: i64, 

 ): api.LfValue { 

   return new api.LfValueRecord( 
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     new Map<string, api.LfValue>() 

       .set("owner", new api.LfValueParty(owner)) 

       .set("count", new api.LfValueInt(count)), 

   ); 
 } 

  export function fromLfValue<SimpleTemplate>(arg: api.LfValue): SimpleTemplate { 

   if (isValidArg(arg)) { 

     let owner = arg.map.entries[0].value.party; 

     let count = arg.map.entries[1].value.int64; 

     return new SimpleTemplate(owner, count); 

   } else { 

     throw new Error( 

       `${arg} is an invalid contract argument type for SimpleTemplate`, 

     ); 

   } 

 } 

  
Code Generation would likely also be used to generate the guest exported functions that 
the host must call for each specific pure or update expression that it needs access to, for 
example, to execute the body of a choice or retrieve template authorization information. 

Based on the template and choice implementations, the following set of guest 
exported functions are generated: 

●​ TemplateName_(signatories|observers): takes template arguments as serialized 
LF value, returns the serialized LF value of a signatories/observers set in the form 
of a bytestring 

●​ TemplateName_precond: takes the template arguments as serialized LF value and 
returns a boolean if the precondition is met. 

●​ For each template choice 
○​ TemplateName_ChoiceName: takes the template and choice arguments as 

LF values serialized to bytestring, returns choice result as serialized LF 
value 

○​ TemplateName_ChoiceName_consuming: returns boolean 
○​ TemplateName_ChoiceName_(controllers|observers): takes template and 

choice arguments to return choice controllers/observers as serialized LF 
value set of parties. 

 
Convenience for interoperability with Daml and other foreign language templates can 
be achieved by generating “facade” contract implementations, that call the appropriate 
create and exercise ledger updates using the package id and template identifiers of those 
externally-defined templates. 

The package id of a Wasm module is computed as the hash of the Wasm module’s 
bytes representation, analogous to package ids of Daml packages. We need tooling to 
code generate the facade contract implementations based on the package ids, template 
arguments and choices. 
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To make this possible universally amongst many languages, a common interface 
description similar to Ethereum’s application bytecode interface’s (ABI) JSON encoding75 
is likely needed. An ABI description of the templates and choices would become a 
standard part of packages for all Canton-supported languages, and each language could 
generate the facades from that API description.  

5 Solidity and EVM support in Canton 
EVM compatibility is a much sought after property for public blockchains. Several of the 
largest public networks in market capitalization have launched EVM compatibility projects 
in the past few years: Solana76, Cardano77, Ripple78, Polkadot79, Near80, Aptos81. Others 
have been designed for various degrees of EVM compatibility from the get go: BNB82, 
Tron83, Avalanche84, Polygon85. 
​ The VeChain documentation86 covers well why EVM compatibility matters for 
Developer Adoption and Code Reusability reasons. But it also illustrates a typical 
narrative on resulting interoperability, which is only partially true.  
 
Developer Adoption is a common argument for using Java (targeting the JVM). If the 
majority of developers in the field are most qualified and most interested in working in 
Java, it makes sense to write apps in Java. Easier hiring, easier training, faster ramp up, 
faster time to market.​
​ Solidity, the primary language in the EVM ecosystem, has overwhelming market 
share in DeFi with over 90% of Total Value Locked (TVL) at the time of writing87. If Canton 
Network is to encompass everything from traditional regulated finance to DeFi, being able 
to address DeFi developers with minimal friction is of clear value. In the regulated 
enterprise space, too, numerous companies have built on private Ethereum clients like 
Besu, and thus developed a community of Solidity developers embedded in financial 
institutions. 
 
Code Reusability is the second strong argument. The introduction (section 1) argues that 
the way to unlock value from blockchain is to move assets and services to a common 
venue where they can interoperate through atomic transactions. There are already many 
venues, both in the form of public networks, and private permissioned enterprise 
networks. So the “move” in the above statement really means “mobilize” by virtue of 
making assets multi-venue, not “build from scratch”.  
​ If Canton Network is to act as a common venue for traditional, regulated finance 
assets and services, traditional assets already tokenized on blockchains, as well as DeFi, 
then it must make it as easy as possible for existing blockchain applications to either 

87 DeFi Llama Languages, https://defillama.com/languages  
86 EVM Compatibility, VeChain documentation, https://docs.vechain.org/core-concepts/EVM compatibility  
85 Polygon PoS, Polygon documentation, https://docs.polygon.technology/pos/  
84 Port an Ethereum dApp to Avalanche, Avalanche documentation, https://docs.avax.network/dapps/end-to-end/launch-ethereum-dapp  
83 Differences from EVM, Tron documentation, https://developers.tron.network/v4.4.0/docs/vm-vs-evm  
82 BNB Smart Chain introduction, https://docs.bnbchain.org/bnb-smart-chain/introduction/  
81 ByteBabel website, https://pontem.network/bytebabel  
80 Aurora website, https://aurora.dev/  
79 Frontier Github repo, https://github.com/polkadot-evm/frontier   
78 XRPL Sidechain website, https://www.xrplevm.org/   
77 Introducing the EVM Sidechain, IOHK, 2022, https://iohk.io/en/blog/posts/2022/07/06/introducing-the-cardano-evm-sidechain/   
76 Neon EVM website, https://neonevm.org/ 
75 
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move to Canton Network wholesale, or to add Canton Network as an additional venue 
supported by the app. If the app is built on the EVM stack, then EVM compatibility makes 
this significantly easier. 
 
Interoperability with DeFi is often cited as one of the main reasons why EVM 
compatibility is important: 
 

Interoperability: EVM compatibility enables different blockchain networks to 
communicate and interact with each other. This allows developers to build 
decentralized applications that can be used across multiple blockchain networks, 
which enhances the interoperability of the entire blockchain ecosystem. 
 
Source: VeChain documentation 
 

The first sentence is a common, but false narrative88. It amounts to arguing that running 
two applications on the JVM makes them interoperable. Two EVM-based applications built 
on two EVM-compatible chains do not communicate or interact with each with much more 
ease than any two applications. Using standards like ERC-tokens and common tooling 
like web3.js can make building interoperability solutions easier as access patterns are 
uniform across both sides. But that can also be achieved using API-abstraction layers like 
Hyperledger Cacti89. 
​ The second sentence, however, does allude to a type of interoperability that EVM 
compatibility can enable if done right. “applications that can be used across multiple 
blockchain networks” describes exactly the idea of multi-venue assets and applications 
that Code Reusability enables. If the multi-venue EVM application is able to interact with 
native applications on all its venues using smart contract calls, then it can offer meaningful 
interoperability.  For example, USDC90 provides meaningful interoperability between the 
Ethereum and Solana ecosystems. USDC is a multi-venue asset that is natively 
interoperable with assets on both sides. A user can freely exchange their USDC on 
Ethereum for USDC on Solana through Circle. Thus any asset on Ethereum can be 
exchanged with low friction for any asset on Solana by going via USDC. This is not atomic 
and does involve an extra counterparty (Circle), but it’s a sound alternative to going 
through an exchange and shows how multi-venue applications can provide 
interoperability. 
 
Solidity and EVM are two sides of the same coin just like Daml and Canton are. The 
language market share statistics above show that Solidity is the only language with 
meaningful market share targeting the EVM, and Solidity has one primary compiler91. At 
the level of the diagram in section 2.5, the EVM stack then looks rather similar to the Daml 
stack.  
 

91 Solidity github repo, https://github.com/ethereum/solidity  
90 USDC website,  https://www.circle.com/en/usdc  
89 Hyperledger Cacti, https://www.lfdecentralizedtrust.org/projects/cacti  

88 Solving interoperability in asset tokenisation, Adam Belding, Calastone, 
https://www.calastone.com/insights/unlocking-the-future-solving-interoperability-in-asset-tokenisation/ 
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While the Solidity language at the core uses ECMAScript for its expressions, just like 
Daml uses Haskell, it adds many extensions designed to efficiently express the EVM 
ledger model, just like Daml has primitives for Canton’s ledger model. The EVM ledger 
model is exposed through the Ethereum JSON RPC API, just like the Canton ledger 
model is exposed through Canton’s Ledger API. Users and off-ledger app components 
interact with the ledger model through that API. Neither app, user, nor developer interact 
meaningfully with the actual virtual machine (EVM), nor the EVM bytecode (contracts).  
 
Valuable EVM compatibility for Canton Network, in light of the above and the potential 
for EVM privacy on Canton discussed in section 1, therefore consists of: 
 
Solidity support, meaning the ability for developers to reuse as much Solidity code as 
they can, with as few alterations as possible, and having it executed faithfully on Canton 
according to the EVM ledger model. 
 
JSON RPC API support, meaning the off-ledger components can interact with Solidity 
contracts and the EVM ledger model running on Canton in a way that is as faithful as 
possible to Ethereum. 
 
Native interoperability, meaning Solidity contracts running on Canton can make atomic 
smart contract calls to native Canton contracts and vice versa. 
 
Controls, meaning the nodes that participate in the consensus on Solidity contracts  
running on Canton can be configured freely. 
 
Privacy and Confidentiality, meaning the contract state of different Solidity contracts is 
distributed selectively, just like Canton contracts are distributed selectively. The observers 
of Solidity contract state can be configured freely. 
 
Given the differences between the Canton and Ethereum ledger models and tech stack 
below the level presented above, there are numerous challenges to overcome, but with 
the potential to add privacy and control to EVM contracts, there are  also interesting 
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opportunities beyond the adoption and code reusability of regular EVM compatibility. The 
rest of this section presents a high level plan for building up EVM compatibility in Canton.  
​ Section 5.1 covers the work involved in laying the groundwork for running any 
Solidity on Canton, by making pure Solidity code reusable. It’ll cover how even this 
already allows for significant code reuse for real world applications, with native 
interoperability. 
​ Section 5.2 will cover the relatively short gap between running pure Solidity code, 
and Solidity contract support with native interoperability as described above, achieved 
through coarse ledger model mapping. It’ll cover the limitations of this approach, but also 
show how this provides coarse but important privacy and confidentiality properties beyond 
any other EVM compatible ledgers. 
​ Section 5.3 will talk about JSON RPC API support. This is a critical component in 
solving for code reusability, but technically it is the most mundane. 
​ Section 5.4 expands on 5.2, describing how Ethereum’s storage trie structure 
might be used to perform much more fine-grained ledger model mapping, lifting some of 
the limitations in 5.2, but also leading to fine-grained confidentiality for Solidity contracts. 
Such fine-grained mapping will likely need to be supported by developer annotations to 
specify visibility of different parts of Solidity contract state and events. 

5.1 Manual EVM Orchestration 
The foundation for EVM compatibility is the ability to execute Solidity code inside a virtual 
machine supported by Canton, and to call that code from choice bodies of Canton native 
contracts, in particular. This would allow Solidity code to be used as a library in Canton 
smart contracts written in another language. How much code reuse this would allow 
depends on the code base in question, but it may be significant. Take, for example, the 
ForgeBond contract92 developed for the bond issuance by the  SocGen Forge for the EIB 
bond issuance93. The code base consists of a single contract (ForgeBond). The contract 
has a state encoded in four structs: 
 
   BasicTokenLibrary.BasicToken private token; 

   BasicTokenLibrary.Bond private bond; 

   OperatorManagerLibrary.OperatorManager private operatorManager; 

   SettlementRepositoryLibrary.SettlementTransactionRepository 

       private settlementTransactionRepository; 

 
Beyond manipulating these structs, the only interaction with the blockchain is I/O via 
emitting events. 
 
Basic Reuse of such a contract on Canton is to manually orchestrate an EVM to  

1.​ Deploy the Solidity contract. 
2.​ Manipulate and read from the Solidity contract by calling functions on it. 
3.​ Read and process emitted events. 

93 Digital Innovation In Capital Markets, Societe Generale, European Investment Bank, Forge, 
https://www.ecb.europa.eu/paym/groups/pdf/omg/2022/220922/Item_2%20_Digital_Innovation_in_Capital_Markets.en.pdf  

92 ForgeBond source code via Blockscan, https://vscode.blockscan.com/ethereum/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb  
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This effectively already allows for manual implementations of the patterns proposed in 5.2 
and 5.4 by adding a new constructor, and a new read function on the contract to extract 
state in bulk. For an app like the aforementioned EIB bond which has a single contract 
with state encapsulated in four structs, and with 125 transactions in its entire lifetime94, 
manually implementing the pattern in 5.2 is not a hard problem, presents no scalability 
issues, and would allow for a lift-and-shift of the smart contract code to Canton with little 
overhead. 
 
Calling the EVM from within a Rust-written Wasm contract for Canton might follow a 
similar pattern to ethcontract-rs95. Here an illustrative example how a contract might be 
instantiated and manipulated: 
 
// Illustrative EVM interaction from Canton 

// Inspired by ethcontract-rs 

use web3::types::*; 

use canton::evm::transaction::Address; 

 

// macro to generate a `MyContract` type consisting of bytecode, 

// linking to an isolated evm instance, and type-safe bindings to 

// contract functions. 

// Take some ERC20 sample as an example. 

canton::evm::contract!("path/to/MyERC20.json"); 

 

// ... 

 

//In the context of a choice: 

 

// Artificial addresses, which may be read from the contract state. 

let owner: Address = "0x0".parse()?; 

let receiver : Address = "0x1".parse()?; 

 

// now create an instance of a solidity contract 

// assuming an empty constructor. 

let erc20 = MyERC20::deploy().from(owner).execute(); 

 

// Call a mutating function 

erc20.transfer(receiver, 1_000_000.into()).from(owner).execute(); 

 

// Call a view function 

erc20.balanceOf(receiver).from(owner).execute(); 

 

// Get events 

let mut transfers = erc20 

95 ethcontract-rs GitHub repo, https://github.com/cowprotocol/ethcontract-rs/tree/main  
94 ForgeBond on Etherscan, https://etherscan.io/address/0x1Ff3D45E2c6c638A8d6BD1c81c99E6dB6D585EEb  
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   .events() 
   .transfer() 

   .from(Topic::This(owner)) 

   .execute(); 

 

 
Hosting Solidity, as illustrated by section 4, can be done in one of two ways. Either one 
can compile Solidity to an existing smart contract engine, or one can embed a new smart 
contract engine that supports the language in question. Concretely, assuming Wasm 
support is present, this means either hosting an EVM implementation in Canton 
participants as a separate VM, compiling Solidity to Daml-LF, compiling Solidity to Wasm, 
or running an EVM inside the Daml or Wasm engines. There is no prior art for the Daml 
options so they are unlikely paths. Canton is JVM-based, and community support for 
JVM-hosted EVMs does exist, so hosting the EVM as a separate virtual machine next to 
Daml and Wasm is one option. Building on Wasm also seems possible thanks to well 
maintained open source projects, both already in use in the Polkadot ecosystem. This 
presents a total of three possible options: 
 
Cross-compilation via Hyperledger Solang96, an open source Solidity compiler targeting 
non-EVM bytecode, is one possible route. Solang has an existing compiler backend 
targeting Wasm bytecode built to target Polkadot. 
 
EVM-hosting inside Wasm using Rust EVM97 (also known as SputnikVM) is another 
route. It claims to be hostable in WebAssembly (Wasm), and forms the core of the 
Polkadot Frontier EVM compatibility layer98. 
 
EVM-hosting as a separate VM inside the JVM, for example based on Hyperledger 
Besu99. 
 
Either of these approaches is likely to go a long way towards being able to instantiate and 
read Solidity types in a Wasm-hosted smart contract language, and to deploy and call 
Solidity contracts from that host. 
 
EVM host function implementation will be the biggest challenge beyond basic 
integration, independent of which approach is taken. The host functions of the Rust 
EVM100 as well as their implementation in Frontier’s EVM stack-based runner101 illustrate 
the complexity of doing so. For the purpose of the manually orchestrated EVM, the 
storage backend can likely be kept to a simple in-memory store. The host functions not 
related to storage are largely context related and exposed in Solidity via block and 

101 Frontier implementation of Rust EVM backend on GitHub, https://github.com/polkadot-evm/frontier/blob/master/frame/evm/src/runner/stack.rs   
100 Rust EVM Runtime Backend Traits on GitHub, https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs  
99 Hyperledger Besu, GitHub repo: https://github.com/hyperledger/besu/  
98 Frontier documentation, https://github.com/polkadot-evm/frontier/blob/master/frame/evm/README.md#evm-engine  
97 Rust EVM GitHub repo, https://github.com/rust-ethereum/evm  
96 Hyperledger Solang, GitHub repo: https://github.com/hyperledger/solang, Docs: https://solang.readthedocs.io/   
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transaction properties102. The majority can be zeroed out or not supported for EVM 
support in Canton: 
 
 

Property / Function Canton Mapping 

blockhash(uint blockNumber) returns 
(bytes32) 
block.number (uint) 

Not supported. Always returns 0. 
See 5.4 for reasons. 

blobhash(uint index) returns (bytes32) 
msg.data (bytes calldata) 
msg.sig (bytes4) 

No special treatment needed. 

block.basefee (uint) 
block.blobbasefee (uint) 
block.difficulty (uint) 
msg.value (uint) 
tx.gasprice (uint) 

Always returns 0. 

block.chainid (uint) Always 0 in library mode. 
Hash of the EVMInstance contract key in 
section 5.2 and beyond. 

block.coinbase (address payable) Equals tx.origin. 

block.gaslimit (uint) 
gasleft() returns (uint256) 

Maximum integer value. 

block.prevrandao (uint) Not supported.  

block.timestamp (uint) Canton Ledger Effective Time 

msg.sender (address) 
tx.origin (address) 

Always 0 in library mode. 
Starts with calling party address in 5.2 and 
beyond. 

  
Manual EVM orchestration allows for broad code reuse of Solidity contracts in Canton. But 
it is left to the developer to extend their Solidity code with appropriate state im- and export 
functions, and to map storage and events to Canton native constructs. To get to true lift 
and shift code reusability as well as seamless interoperability between Solidity and 
Canton Native contracts, additional functionality and pre-packaged patterns are needed. 
These are demonstrated in sections 5.2 and 5.4.   
 

102 Solidity Block and Transaction properties, https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties  

 

58 

https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties


Polyglot Canton: Towards an open language ecosystem and EVM compatibility with privacy on Canton Network 
 

5.2 Coarse Ledger Model Mapping 
The EVM is a state machine. It has an internal state S, and every function either reads 
from S via function r(S), or it writes to S, mutating the state to some function of S, S’ = 
w(S). 
 

 
Source: Ethereum Whitepaper 
 
This makes it relatively straightforward to use the capabilities from section 5.1 to 
functionally map the EVM ledger model to the Canton ledger model, or indeed any UTXO 
model. A single UTXO which keeps the entire EVM state S and gets consumed and 
re-created with data S’=w(S) by any function call to w behaves exactly like the state 
machine. 
​ If it were possible to read and load EVM state wholesale from a Canton 
serializable value, one could write a Canton contract representing an EVM instance as 
follows. While this is likely to happen from within a Wasm-hosted language, the below 
uses Daml syntax for its conciseness. 
 
template EVMInstance 

 with 

   sigs : [Party] 

   obs : [Party] 

   state : EVMState 

 where 

   signatory sigs 

   observer obs 
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   nonconsuming choice Call : (ContractId EVMInstance, [EVMEvent]) 
     with 

       signedTx : EVMSignedTX 

       caller : Party 

     controller caller 

     do 

       evm <- initializeEVMFromState state 

       h <- stateRootHash evm 

       events <- submitSignedTx evm signedTx 

       h' <- stateRootHash evm 

 

      forA_ events (\event -> exercise self Emit with event) 

 

       if h == h' 

         then return (self, events) 

         else do 

           archive self 

           state' <- evmState evm 

           self' <- create this with state = state' 

           return (self', events) 

    

  nonconsuming choice Emit : () 

     with 

       event : EVMEvent 

     observer obs 

     controller sigs 

     do () 

 

 
The function submitSignedTx is already enabled by 5.1. The serializable EVMState and 
EVMSignedTx types as well as the functions initializeEVMFromState, evmState, and 
stateRootHash are relatively minor extensions to the work in 5.1. The above template 
could be made available as a library to enable Solidity contracts on Canton without any 
custom development. 
 
EVM Events in the above are made available via the Canton Ledger API as 
non-consuming choices on the EVM instance.  
 
One-way Interoperability between Canton native contracts and EVM is already given by 
the above. Canton contracts can call into EVM instances. This enables constellations of 
privacy and atomicity beyond any other private Ethereum implementation today. 

Returning to the DvP example from earlier, we imagine Issuer1 has developed a 
payment system, and Issuer2 has developed a bond token. Each token should be visible 
to and validated by small, nonidentical groups of entities. One entity, called Exchange in 
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this example, with visibility into both tokens, offers swap/exchange services. Alice and Bob 
have entered into a trade. 

With the above EVMInstances on Canton, this is easy. Issuer1 and Issuer2 each 
deploy an EVM instance with them as the respective signatory and the Exchange as a 
common observer. Alice and Bob independently allocate funds to the trade by delegating 
them to the Exchange. The Exchange can send two Canton commands, or call the two 
EVM instances from a single choice and thus make the two transfer calls in a single 
atomic transaction. Issuer1 and Issuer2 see only the transfers on their respective EVM 
instances. 

Contrast this with today’s capabilities of subnets, rollups, groups, channels, or 
private Ethereum instances. The two transfers have to happen in two independent 
transactions. De facto, the exchange has to act as a central counterparty, facilitating 
traditional non-atomic clearing and settlement. The exchange can reduce the risk of partial 
settlement by implementing custom protocols like hashed timelock contracts103, but they 
cannot eliminate it. 
 
Authorization in the above is solved crudely in that it does not link Canton’s authorization 
model with the EVM’s. The addresses in the EVM are EVM externally owned addresses 
(EOA), and a signed Ethereum transaction has to be passed through a Canton command. 
As a result, in the above example, the exchange is the only guarantor of atomicity of the 
swap. They could choose to send a single transfer command rather than both. It would be 
nicer if the trading parties, which may be financial institutions themselves, could 
participate in consensus and thus guarantee atomicity for themselves. In other words, it 
would be preferable if the trading parties themselves would have to authorize the call to 
the EVM instead of delegating the funds to the exchange. 

This can be accomplished with identity mapping between parties and addresses, 
not requiring a signature on the EVM translation, and instead setting the EVM’s tx.origin 
(and initial msg.sender) to be the controller party of the Call choice. One could call such 
addresses Canton Party addresses to distinguish them from EOAs. 

 
       events <- submitTx evm caller tx 

 
In the EVM, an address is a 160-bit fingerprint of  a public key. It would be natural 

to translate a Canton Party to an EVM Address by taking a 160-bit hash of the full party 
identifier. With this capability in place, the Swap could be conducted as if it were a Swap 
between Canton native tokens. Note that in this scenario, the fromParty and toParty will 
see the EVM instances being manipulated, so they learn of the token state at the point of 
the swap. Section 5.4 will address this topic. 

 
template EVMSwap 

 with 

   fromParty : Party 

   toParty : Party 

103 Lightning Networks Part II: Hashed Timelock Contracts (HTLCs), Rusty Russell, 2015, 
https://rusty.ozlabs.org/2015/04/01/lightning-networks-part-ii-hashed-timelock-contracts-htlcs.html  
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   exchangeParty : Party 
   fromToken : EVMAddress 

   toToken : EVMAddress 

   fromAmount : Decimal 

   toAmount : Decimal 

 where 

   signatory fromParty, toParty, exchangeParty 

 

   choice Swap : () 

     with 

       fromEVM : ContractId EVMInstance 

       toEVM : ContractId EVMInstance 

     controller exchangeParty 

     do 

       exercise fromEVM Call with 

           tx = toERC20Transfer (fromToken, fromAmount, toParty) 

           caller = fromParty 

       exercise toEVM Call with 

           tx = toERC20Transfer (toAddress, toAmount, fromParty) 

           caller = toParty 

   

 
 
Full Interoperability requires the ability to call from EVM instances to Canton native 
contracts, and equivalently from EVM instance to EVM instance. The above already hints 
at one of the challenges to be overcome, which is addressing. The EVMAddress types 
above refer to smart contracts within the EVM instances. In a single EVM, addresses are 
unique. With the potential for multiple EVM instances, we have to make sure they are also 
unique in Canton and can be resolved to the right EVM instance.  
 
Smart Contract Addresses in the EVM are also 160-bit hashes as introduced for Party 
mapping above. They are a hash of the sender’s address plus the sender’s nonce used 
for the contract deployment. A similar scheme might be possible for Canton, but has the 
challenge that to avoid the same address existing in two EVM instances, each Party 
would need to maintain a global nonce. A likely better alternative is to calculate smart 
contract addresses not only from sender and nonce, but from the triple (sender, sender 
nonce in EVM instance, EVM instance Id). 
​ This leaves open how EVM instances are identified. A natural choice would be to 
use Daml’s contract keys, and rely on the signatories of an EVM instance to ensure 
uniqueness of the identifier. This context could be passed into every EVM call so that 
addresses could be computed appropriately. 
 
        
template EVMInstance 

 with 
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   uuid : Text 
   sigs : [Party] 

   obs : [Party] 

   state : EVMState 

 where 

   signatory sigs 

   observer obs 

   key (uuid, sigs) : (Text, [Party]) 

   maintainer key._2 

 

   nonconsuming choice Call : (ContractId EVMInstance, [EVMEvent]) 

     with 

       callData : EVMCallData 

       caller : Party 

     controller caller 

     do 

       evm <- initializeEVMFromState state (key this) 

 
EVM instance resolution still requires some sort of persistent index, which would need to 
be provided by the hosting participant, further simplifying the Swap choice. 
 
 
   choice Swap : () 
     controller exchangeParty 

     do 

       callEVMAddress fromToken with 

           tx = toERC20Transfer (fromAmount, toParty) 

           caller = fromParty 

       callEVMAddress toToken with 

           tx = toERC20Transfer (toAmount, fromParty) 

           caller = toParty 

 
Note that ignoring the explicit caller party, this is now equivalent to a contract call within 
Solidity itself.  
 
fromToken.transfer(toAddress, 1000); 

 
The Canton-hosted EVM (or Wasm code) can thus make a dynamic choice. If the 
fromToken address is known in the current EVM instance, call it EVM-instance internally. If 
it is not, insert an exercise node corresponding to a callEVMAddress fromToken with the 
tx.origin being carried over, and msg.sender set appropriately. 
 
EVM-to-Canton calls would require an always-available pseudo-contract in each 
EVM-instance, likely at a fixed address. Calls to this pseudo-contract would need to be 
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intercepted by the host and treated appropriately. Such a call would have the authority of 
the party used in tx.origin. 
 
pragma solidity ^0.8.3; 

 

// Canton library and interface provided out of the box 

library Canton { 

   address constant canton = 0x0000000000000000000000000000000000000001; 

   ICanton constant interfaceContract = ICanton(canton); 

 

   struct CantonCall { 

       string cid; 

       string choice; 

       bytes args; 

   } 

 

   function call(CantonCall memory params) returns (bytes memory ret) { 

       interfaceContract.callCanton(params); 

   } 

} 

 

interface ICanton{ 

   function callCanton(Canton.CantonCall memory params) 

       returns (bytes memory ret) ; 

} 

 

 

// User code 

contract Caller { 

 constructor () public {} 

 
 function interactWithCanton () { 

   bytes ret = Canton.call(CantonCall(foo, bar, baz)) 

 } 

} 

 
Code Generation  could be used either side to make EVM - Canton and Canton - EVM 
calls more type safe. The way this might work to call an EVM contract from Canton was 
already demonstrated using Rust syntax in 5.1. Vice versa, creating appropriate EVM 
structs for data types of Canton-native template and choice arguments and return types 
would make it easier to handle calls than needing to en-/decode bytes. 
 
The above construct is highly powerful in that it allows EVM execution in Canton with 
privacy, and enables two-way interoperability between Canton native and EVM contracts. 
However, it has three limitations. 
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Contention is a problem account based ledger models like EVM and UTXO based ledger 
models like Canton solve differently. In UTXO models, commands are interpreted before 
ordering. Contention is detected through collision detection on UTXOs and attempted 
double spends are rejected. To get low contention, developers need to break up the state 
into appropriately small UTXOs. Account based models like EVM interpret commands 
after ordering. This has downsides like reordering and frontrunning attacks, and harder 
parallelizability, but it also has the upside that transactions don’t fail due to simple 
write-write contention or even read-write contention. Translating the ledger model to 
UTXO as proposed here means that every two writes to a single EVM instance contend 
with each other. As a consequence, throughput on a single EVM instance is limited. Going 
back to the throughput requirements of a token like the EIB bond, this is unlikely to be a 
practical issue for initial lift-and-shift uses. Section 5.4 will address this limitation. 
 
Reentrancy104 is both a major feature of the EVM as well as one of its bigger security 
flaws. UTXO based ledgers like Canton do not allow for re-entrancy. Since a single EVM 
instance in the above is archived and re-created exactly once for a call,  re-entrancy within 
a single EVM instance works just fine. However,  re-entrancy between two EVM instances 
will fail. Say there are EVMInstance contracts A and B. A function foo within A calls to a 
function bar within B, which in turn calls a function baz within A. Both the calls to foo and 
baz will attempt to archive A through the archive self call inside the Call choice. This is a 
double spend in the UTXO model and will therefore not work. 
​ This is a form of contention as the original call to A, and the re-entrancy from bar 
are treated as two separate calls, and thus run into write-write contention. As such, 5.4 will 
also address some reentrancy limitations. 
 
Privacy and Confidentiality in this model is already superior to “private EVM” ledgers in 
that atomic transactions across different stakeholder sets are possible while maintaining 
privacy as seen in the DvP example. 
​ However, the DvP example also shows that the privacy achieved here is inferior to 
Canton’s native capabilities. With Canton’s native sub-transaction privacy Alice and Bob 
can participate in consensus on the Swap while only learning about the details of the 
Swap that they know anyway. In the coarse ledger mapping presented here, Alice and 
Bob learn the entire EVMInstance state if they participate in consensus. 
 
Scalability could become an issue for large Solidity contracts. Canton is optimized for 
small data payloads on contracts. While it has been proven to work with single contracts 
storing upwards of 100MB, most synchronizers limits message sizes to just 10MB, which 
includes both input and output contracts. So in practice, to perform a DvP, the total data 
on each of the two involved EVM instances will need to be below 2MB. Assuming an 
optimal 64 bytes per balance entry (256 bit each for slot hash and value),  a simple 
ERC20 token would hit this limit at around 16384 balance entries. That’s a non-trivial 

104 Re-Entrancy, Solidity by Example, https://solidity-by-example.org/hacks/re-entrancy/  
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number and sufficient for many of the non-stablecoin Real World Assets (RWAs) today, 
but doesn’t even come close to supporting a retail stablecoin like USDC. 
 
Summarizing this section, building on the basic ability to instantiate and call EVM 
instances from Canton native contracts, it is possible to automatically generate contract 
and identity mappings that allow for functional lift-and-shift of EVM contracts to Canton. 
Canton’s smart contract interoperability and privacy capabilities are transferable to these 
EVM instances allowing for atomic transactions spanning multiple EVM instances and 
Canton native contracts with different validator and observer sets. While some limitations 
will require developers to decide carefully how to partition their EVM code into EVM 
instances on Canton, and how to construct settlements to maintain privacy, this construct 
offers capabilities beyond any other EVM ledger, as well as EVM-compatibility and 
interoperability of Canton at a high fidelity. 

5.3 API Wrappers 
Off-ledger integration with Solidity contracts 
happens via the Ethereum JSON RPC105. To fully 
address the developer adoption and code reusability 
goals stated in the introduction of section 5, Canton 
must expose the Ethereum JSON RPC to interact 
with EVM instances running on Canton. The most 
likely approach for doing so is a proxy pattern similar 
to the Neon EVM targeting Solana106. 
​ For Canton, this involves putting an API 
proxy in front of Canton’s Ledger API. The proxy 
consumes data from the Ledger API, possibly stores 
and indexes it in a form of persistent cache, and 
exposes read methods to clients. Vice versa, it takes 
calls to write methods and converts them to Ledger 
API Commands. 
​ Since some Ethereum RPC methods require 
running smart contracts (e.g. eth_call), such a proxy 
also needs to run the smart contract engine that 
handles EVM contracts. Since the Ethereum JSON 
RPC is designed for a single EVM instance, a 
separate endpoint would be provided per EVM 
instance on canton, for example using the chain id (hash of EVMInstance contract key) as 
URL path. 
 
The most important RPC methods for integration are the gossip, state, and history APIs 
that respectively allow for writing to an EVM chain, reading current state, and navigating 
historic state. The UTXO mapping from section 5.2 ensures that historic EVM Instance 

106 Neon EVM docs, How it works,  https://neonevm.org/docs/about/how_it_works  
105 Ethereum JSON RPC docs, https://ethereum.org/en/developers/docs/apis/json-rpc/  
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state is available via Canton’s Ledger API. The Canton <> EVM interoperability and 
addressing ensure that EVM transactions can be submitted through the Ledger API.  
 
Blocks don’t exist in Canton as they do in Ethereum, and blocks feature heavily on all 
three types of API methods. However, transactions on a single contract like an 
EVMInstance are consistently totally ordered for all signatories, so for API purposes, one 
can treat transactions as blocks and convert transaction ids into block ids through 
appropriate hashing: Ethereum Block Hash = H256(canton transaction id). 
​ While block numbers are not available in Solidity (see section 5.1) to avoid 
contention in preparation for section 5.4, the JSON RPC Proxy could assign sequential 
block numbers to transactions affecting an EVM instance and thus also serve the RPCs 
that are ByNumber, and not ByHash. 
​ Canton’s consensus has instant deterministic finality so block default parameters 
map to either the earliest available EVMInstance state, latest committed EVMInstance 
state, or the given block number. 
​ The lack of blocks also implies the lack of uncles107. All RPCs dealing with uncles 
would behave as if there are no uncles. 
 
EVM transactions do not correspond one to one to Canton transactions. A single Canton 
transaction may contain multiple EVM transactions on a single EVM instance, as well as 
EVM transactions on multiple EVM instances. Due to the lack of re-entrancy across EVM 
instances, EVM transactions do, however, correspond one to one to Call exercises on 
EVMInstance contracts. Thus the RPC Proxy can appropriately hash, and index those 
events to serve EVM transactions both by Hash and Number, and serve EVM transaction 
receipts. 
 
Block data doesn’t exist as such. Thus when requesting a block by hash or number. The 
RPC would populate data like this: 
 

  

number: QUANTITY See above. 

hash: DATA, 32 Bytes Canton transaction id hash. 

parentHash: DATA, 32 Bytes Canton transaction id hash of the previous 
transaction that changed the same EVM 
instance. 

nonce: DATA 
sha3Uncles: DATA, 32 Bytes 
logsBloom: DATA, 256 Bytes 
transactionsRoot: DATA, 32 Bytes 
stateRoot: DATA, 32 Bytes 
receiptsRoot: DATA, 32 Bytes 

null/0 

107 What are uncle blocks, Alchemy documentation, https://docs.alchemy.com/docs/what-are-uncle-blocks  
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miner: DATA, 20 Bytes 
difficulty: QUANTITY 
totalDifficulty: QUANTITY 
extraData: DATA 
size: QUANTITY 
gasLimit: QUANTITY 
gasUsed: QUANTITY 

timestamp: QUANTITY Canton Ledger Effective Time 

transactions: Array Implemented faithfully. 

uncles: Array [] 
 
Transaction signing and its interplay with offchain components is core to the way 
Ethereum is integrated in user experiences and security solutions. The identity mapping in 
5.2 means that Canton Party addresses are no longer public key fingerprints. 
Furthermore, the Canton Ledger API expects a signed Canton transaction or JWT-based 
authentication against a participant that hosts the submitting party in submission mode, so 
a signed Ethereum transaction does not help to authenticate against the Canton Ledger 
API. 
​ To support Ethereum externally owned addresses (EOAs) securely, a unique party 
would have to be generated from the key corresponding to the EOA. This could be done 
by taking the EOA private key as a Canton namespace root key, and reserving some 
special prefix to designate the party corresponding to the EVM address. Suppose a user 
has generated private key P corresponding to address A. The user could now onboard 
their wallet to Canton by creating a namespace N from private key P’s public key 
fingerprint, and allocate a party (“eth_address”, N), where “eth_address” is a hard-coded 
reserved party name. They would furthermore have to write a delegation contract to the 
ledger, which allows the proxy provider to submit signed EVM transactions with that 
party/address combination. This allows the proxy provider to authenticate against the 
Canton Ledger API using their own party (proxy_operator below). 
 
template EVMProxyDelegation 

 with 

   eth_address_party : Party 

   proxy_operator : Party 

 where 

   signatory eth_address_party 

   observer proxy_operator 

 

   nonconsuming choice DelegatedCall : () 

     with 

       evm : ContractId EVMInstance 

       callData : EVMCallData 

     controller proxy_operator 
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     do 

       validateEthSignatureForParty eth_address_party callData 

       exercise evm Call with 

         callData = callData 

         caller = eth_address_party 

 

 
Such a construct would allow Ethereum wallet clients like MetaMask to work with 

Canton hosted EVMs and even interact with Canton native contracts through on-ledger 
interoperability.  The key owner could set up the same key for external signing of Canton 
native transactions, providing a unified wallet across EVM and canton native assets. 
 
Summarizing, a JSON RPC proxy constructed like this would be able to serve the core 
gossip, state, and history RPC methods to a degree of compatibility that supports lift and 
shift of Ethereum application to Canton with only minor caveats or modification. 

Users could interact with a single unified ledger through Canton or EVM native 
interaction patterns or APIs, up to and including using the same signing key Canton and 
EVM native interactions offering something akin to a unified wallet across tokens native to 
the different ledger models.​  

5.4 Fine grained mapping with added privacy 
The limitations in section 5.2 are all a result of the coarse state mapping of one EVM 
instance to one Canton contract. Such monolithic UTXOs go against the general ethos 
and design of eUTXO systems. To solve the contention issue, in particular, data has to be 
structured into Canton contracts in such a way that transactions by two users do not 
attempt to consume any common contract. A simple ERC-20108 token serves as an 
example. 
 
 
contract ERC20 is IERC20 { 

   event Transfer(address indexed from, address indexed to, uint256 value); 

   event Approval( 

       address indexed owner, address indexed spender, uint256 value 

   ); 

 

   uint256 public totalSupply; 

   mapping(address => uint256) public balanceOf; 

   mapping(address => mapping(address => uint256)) public allowance; 

   string public name; 

   string public symbol; 

   uint8 public decimals; 

 

   constructor(string memory _name, string memory _symbol, uint8 _decimals) { 

108 Solidity By Example, ERC-20, https://solidity-by-example.org/app/erc20/  
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       name = _name; 

       symbol = _symbol; 

       decimals = _decimals; 

   } 

 

   function transfer(address recipient, uint256 amount) 

       external 

       returns (bool) 

   { 

       balanceOf[msg.sender] -= amount; 

       balanceOf[recipient] += amount; 

       emit Transfer(msg.sender, recipient, amount); 

       return true; 

   } 

 

 
Contention free transfers would require the state corresponding to each map entry in 
balanceOf to be stored in a separate Canton contract. The only contract state mutated by 
transfer are the balanceOf entries corresponding to message sender and transfer 
recipient. If address 0x01 transferred funds to address 0x02, and address 0x03 
transferred funds to 0x04, then those four pieces of state would reside on separate 
Canton contracts. The two transactions would consume disjoint Canton contracts and not 
contend on the balances. 
​ To extend this to the transaction as a whole, the transaction must not consume any 
other shared Canton contracts. In particular, the “global” state of the ERC-20, meaning 
totalSupply, name, symbol, decimals must not be consumed, nor must any other map 
entries. And there must not be any mutable shared state on the EVMInstance itself. This 
is the primary reason that the EVM in Canton would not make available block numbers or 
block hash. Nor can World State or Account State hashes for contract address be stored 
on the blockchain. More on those below. 
 
High Scalability would also be achieved by storing the balances of different asset holders 
in separate UTXOs. The balanceOf (and allowance) maps represent the vast majority of 
the state of a typical token. If this state is broken up across many Canton contracts, only a 
few of which are used as inputs to a transfer, then individual transactions and contracts 
can stay small in size and there is no limit to the number of holders or total transfer 
throughput on a given token. 
 
The EVM’s storage model and typical Solidity contracts like the above or the ForgeBond 
example are amenable to being mapped to a UTXO ledger in such a way that frequently 
mutated state associated with a single address is stored in separate UTXOs. For a full 
explanation of Ethereum’s storage architecture, the reader should refer to the Ethereum 
Yellow Paper109. What’s important to understand for this paper is that Ethereum’s storage 

109 Ethereum Yellow Paper, https://ethereum.github.io/yellowpaper/paper.pdf ​  
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consists of two nested levels of Merkle Patricia Tries110. The outer tree called the World 
State maps 160 bit addresses to Account State. Account states have four fields: 
 

●​ nonce: A counter that is incremented each time the address submits a transaction. 
For contract accounts, the nonce is incremented only on the CREATE operation, 
meaning only if another contract is created, not if another contract is called111. 

●​ balance: The account’s balance of the native currency (e.g. ETH). 
●​ storageRoot: A reference to the storage trie of the account. This is empty for 

externally owned accounts. 
●​ codeHash: A reference to the code deployed to the account. This is empty for 

externally owned accounts. 
 
The storage root of an account is the root hash of another Merkle Patricia Trie mapping 
256 bit keys to 256 bit values. Each entry is called a slot. The solidity compiler assigns 
each storage variable on a contract a slot112. It does so in order, meaning the first variable 
goes into slot 1, and it uses packing, meaning data types shorter than 256 bit may share a 
slot. For variable length types like arrays, bytes, string, or maps, the variable itself takes 
up exactly one slot, but its values are mapped to other slots by hashing their keys and 
relying on no collisions in the 256-bit key space of the trie. Importantly here, for a mapping 
like balanceOf in slot p, say, the value corresponding to key k would be found in slot 
keccak256(h(k) . p), where the dot means concatenation. This extends to nested maps 
like allowance at slot q, say. The value of entry allowance[k1] would be at  s(k1) = 
keccak256(h(k1) . q). The value of allowance[k1][k2] would be at  keccak256(h(k2) . 
s(k1)). 
​  
Mapping the Slots to UTXOs gives exactly the contention properties needed for 
contention free transfers. A rough schema using Daml syntax is shown below. 
 
 
template EVMInstance 

 with 

   uuid : Text 

   sigs : [Party] 

   obs : [Party] 

 where 

   signatory sigs 

   observer obs 

   key (uuid, sigs) : (Text, [Party]) 

   maintainer key._2 

 

   nonconsuming choice Call : () 

     with 

112 Solidity Storage Layout, https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html  
111 EIP-161 specifying contract account nonce behaviour, https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md  
110 Merkle Patricia Tries, https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/​  
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       callData : EVMCallData 
       caller : Party 

     controller caller 

     do 

       events <- callEVM evm callData 

       forA_ events (\event -> exercise self Emit with event) 

 

template AccountState 

 with 

   evm : EVMInstance 

   nonce : Int 

   -- No Balance as always 0. 

   address: Address 

   externalParty : Optional Party 

   code : Optional EVMCode 

 where 

   -- Inherit metadata from the evm Instance 

   -- Except that parties can self-sign their own 

   -- AccountState for externally owned accounts 

   signatory (signatory evm) , externalParty 

   observer (observer evm) 

   key (key evm, address) : (EVMInstance, Address) 

   maintainer (maintainer key._1) 

 

template Slot 

 with 

   accountKey : (EVMInstance, Address) 

   slotNumber : Int 

   slotValue : Int 

 where 

 -- Same metadata from the AccountState 

 signatory (signatory accountKey._1) 

 observer (observer accountKey._1) 

 key (accountKey, slotNumber) : ((EVMInstance, Address), Int) 

 maintainer (key._1._1) 

 

 
The callEVM function needs to do more heavy lifting than in the section 5.2 model. 
Instead of being instantiated from a given state, running in memory, and then writing state 
back, it now needs to fetch, archive, and create state on the fly. All the read operations in 
Rust-EVMs RuntimeBaseBackend113 would translate to Daml’s fetchByKey operations. 
Write operations like set_storage in Rust-EVMs backend would translate to pairs of 
archive and create operations. 

113 Rust EVM RuntimeBaseBackend, https://github.com/rust-ethereum/evm/blob/master/interpreter/src/runtime.rs#L110  
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​ Non-existence checks of contract keys are not supported natively by Canton’s 
ledger model whereas non-existence checks of map keys are commonplace. To resolve 
this, a low-contention Radix-tree index could be maintained on-ledger for each map in 
Ethereum. 
 
The above mapping of the Ethereum account storage trie to Canton contracts resolves the 
contention, re-entrancy, and scalability limitations of 5.2. It can also address 
confidentiality. The EVM instance operators would need to create read access controls at 
the API layer so that Alice can read exactly the state needed for her to submit transfers, 
and Alice would need to supply them to her participant node (or Proxy provider) using 
Canton’s explicit disclosure feature114. This is workable, but not as nice as using the 
on-ledger observer feature. Furthermore, the above is rather expensive on the runtime. 
The global state variables, totalSupply, name, symbol, and decimals, each reside in their 
own Canton contract, but are likely accessed for many transactions. This is pronounced 
even more in the real-world ForgeBond example where there is more global state on the 
contract. 
 
Custom annotations to Solidity could let the developer choose which pieces of state are 
stored in their own, separate Canton contracts, and dynamically add observers to fully 
utilize Canton’s privacy features for EVM state sharing. The @ annotations in the below 
are illustrative only. Depending on the implementation approach (Wasm hosted EVM vs 
compilation to Wasm) a different type of annotation would work better. For example 
implementing a provided interface with pure functions mapping events and key/value pairs 
to observers. 
 
 
contract ERC20 is IERC20 { 

   @observers([e.from, e.to]) 

   event Transfer(address indexed from, address indexed to, uint256 value); 

 

   @observers([e.owner, e.spender])    

   event Approval( 

       address indexed owner, address indexed spender, uint256 value 

   ); 

 

   uint256 public totalSupply; 

   @contractPerEntry 

   @keyAsExtraObserver 

   mapping(address => uint256) public balanceOf; 

   @contractPerEntry 

   @keyAsExtraObserver 

   mapping(address => mapping(address => uint256)) public allowance; 

   string public name; 

   string public symbol; 

114 Explicit Contract Disclosure, https://docs.daml.com/app-dev/explicit-contract-disclosure.html  
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   uint8 public decimals; 

 

 
Such a construct for native maps will likely need significant modification to a Solidity 
compiler and/or Runtime. The reason is that EVM bytecode has no notion of mappings, 
but uses the above rules for mapping map keys to storage slots. And there is no way to 
recover the storage key, which is the desired observer, from the storage slot. If this 
problem is intractable for native maps, developers may have to adjust their code from 
native mappings to custom mapping so that the host can do reverse lookups from slots to 
addresses. This could be accomplished, for example, by emitting a specific event rather 
than writing to storage directly, which can be intercepted and interpreted by the host. 
 
 
library CantonMapping { 

   struct Map { 

       mapping(address => uint256) values; 

   } 

 

   event MapStore(uint256 mapSlot, address key, uint256 value); 

   event MapDelete(uint256 mapSlot, address key); 

 

   function get(Map storage map, address key) public view returns (uint256) { 

       return map.values[key]; 

   } 

 

   function set(Map storage map, address key, uint256 val) public { 

     // Emit an event instead of setting storage directly. 

     // The host is responsible for updating storage by creating 

     // or cycling the Canton contract for the slot. 

     uint256 mapslot; 

     assembly { 

         mapslot := map.values.slot 

     } 

     emit MapStore(mapSlot, key, val); 

 

     // Compatibility for other EVM ledgers. 

     if(map.values[key] != val) { 

       map.values[key] = val; 

     } 

   } 

 

   function remove(Map storage map, address key) public { 

     uint256 mapslot; 
     assembly { 

         mapslot := map.values.slot 
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     } 

     emit MapDelete(mapSlot, key); 

     delete map.values[key]; 

   } 

} 

 

 
Any solution to such annotations will be costly to implement in Canton and maybe 

impose some work on the developer as in the above. But this cost is justified. If 
developers could annotate events and maps with observer information, a Solidity token 
could make use of Canton’s full confidentiality capability while maintaining Solidity’s 
programming model, and without needing to resort to API-level read permissioning. 

6 Conclusion 
Blockchain and distributed ledger technology have the potential to fundamentally 
transform the plumbing of the financial system, providing lower risk, more real time 
experiences and more integrated capabilities up to and including straight-through 
processing at the industry level. New value and business models are possible on smart 
contract blockchain platforms based on the ability to perform low trust atomic transactions 
across independent applications. Canton is a next generation layer 1 protocol providing 
the configurable controls, privacy and confidentiality allowing a wide spectrum of use 
cases and users, up to and including regulated financial institutions, to participate in the 
public permissioned Canton Network and extract the full benefits of the technology.  

Daml is Canton’s original smart contract language, designed from the ground up to 
safely and concisely program Canton’s ledger model. It will remain a strong choice for 
programming Canton applications, but advances in virtual machines, and developments in 
the public permissionless blockchain space have opened the door to integrating additional 
smart contract programming languages for Canton. This paper presents two additive 
efforts to open up Canton to different languages and add value to the blockchain and DLT 
space as a whole by doing so. 

Integration of a Wasm virtual machine as an alternative to the Daml engine would 
allow Canton native smart contracts to be programmed in a general purpose surface 
language like Rust or AssemblyScript. This would allow easier developer adoption of 
Canton by providing a more familiar experience than the purely functional and strongly 
typed Daml language. This work could well open the door to Canton being able to support 
an open ecosystem of virtual machines, opening up the Canton smart contract language 
ecosystem entirely. 

Based on the Wasm virtual machine, or by integrating a separate virtual machine, 
it is possible to support Solidity smart contracts on Canton offering high fidelity 
EVM-compatibility. This would allow for the lift and shift of existing Solidity-based solutions 
to Canton and also open up the Canton Network to the existing Solidity developer 
community. But perhaps most importantly, EVM support as presented in this paper would 
bring Canton’s configurable controls, privacy, and confidentiality to EVM contracts. This is 
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a capability no other chain or network can currently offer and presents a major hurdle to 
institutions moving beyond private permissioned deployments of EVM chains. 

The materials presented in this paper are the first steps towards enabling the 
Canton Network ecosystem, Digital Asset included, to develop additional language 
support for Canton as open source contributions. 
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